dw2

22 June 2018

June 24th: A doubly historic day for Symbian

Filed under: smartphones, Smartphones and beyond, Symbian, Symbian Foundation, Symbian Story — Tags: — David Wood @ 11:13 pm

This Sunday will be the 24th of June 2018. It’s a doubly historic day for Symbian – and for the evolution of the smartphone industry.

Twenty years ago, to the day, the birth of Symbian Ltd was announced to the world. My colleague on the very first Symbian Operational Board, Bill Batchelor, urged all employees of the new company to “make a special note in your Agenda”.

Here’s a copy of my own Agenda file from that day – taken from my Psion Series 5mx:

The name “Symbian” had been a carefully guarded secret up to that day. The new company had been referred to, within planning documents with tightly restricted distribution, as “Nova” – representing an astronomically bright object. The very idea of a new company took nearly all employees of Psion (Symbian’s parent) as a surprise that morning.

The thinking behind the creation of the new company was spelt out at an “Impact” meeting in the Metropole Hotel on London’s Edgware Road. To mark the anniversary of this event, it’s an appropriate occasion for me to share some of the slides presented that day:












With the wisdom of hindsight, these slides can be seen as a mixture of powerful vision and naively audacious optimism.

Fast forward exactly ten years, to 24th June 2008. That morning, I was in Cambridge, ready to share news to all Symbian employees there that another huge transformation was to take place in the Symbian universe. Here’s my Agenda entry for that day:

I can, again, convey the essence of the news via a selection of the slides used on that day:






Once again, with the wisdom of hindsight, these slides can be seen as a mixture of powerful vision and naively audacious optimism.

More of our thinking was captured at the time by blogposts written by me (“Symbian 2-0”) and my Symbian Foundation Leadership Team colleague John Forsyth (“Welcome to the future of Symbian”).

The thinking behind the Symbian Foundation also built upon an inspired piece of strategic communication from earlier in 2008, led by Symbian’s CEO from that time, Nigel Clifford. He called it “the Symbian story”:






Did either of these powerful visions, set out ten years apart, have much of a chance of becoming a reality? Opinions still differ on these questions. I’ve set out my own analysis in my book “Smartphones and beyond: lessons from the remarkable rise and fall of Symbian” (published in September 2014).

Footnote

Any former Symbian employee who wishes to take part in some face-to-face reminiscences, and who can be near Symbian’s former headquarters in Boundary Row, Southwark, London, on the evening of Friday 29th June, is welcome to get in touch. Several of us will be gathering, ready to share news and views of what was, and what might have been.

30 June 2015

Securing software updates

Software frequently goes wrong. That’s a fact of life whose importance is growing – becoming, so to speak, a larger fact of life. That’s for three reasons:

  1. Complex software is spreading more widely into items where, previously, it was present (if at all) only in simpler form. This includes clothing (“wearable computing”), healthcare accessories, “connected home” consumer goods, automobiles (“connected vehicles”), and numerous “Internet of Things” sensors and actuators. More software means a greater likelihood of software error – and a greater likelihood of being hacked (compromised).
  2. Software in these items is increasingly networked together, so that defects in one piece of software can have effects that ricochet unexpectedly. For example, a hacked thermostat can end up reporting industrial secrets to eavesdroppers on the other side of the planet.
  3. By design, modern-day software is frequently open – meaning that its functionality can be configured and extended by other pieces of software that plug into it. Openness provides the possibility for positive innovation, in the way that apps enhance smartphones, or new themes enhance a webpage design. But that same openness enables negative innovation, in which plug-ins subvert the core product. This type of problem arises due to flaws in the set of permissions that expose software functionality from one module to another.

All three of these factors – the intrinsic defects in software, defects in its network connectivity, and defects in permission systems – can be exploited by writers of malware. Worryingly, there’s a mushrooming cybercrime industry that creates, modifies, and deploys increasingly sophisticated malware. There can be rich pickings in this industry. The denizens of Cybercrime Inc. can turn the principles of software and automation to their advantage, resulting in mass-scale deployment of their latest schemes for deception, intrusion, subterfuge, and extortion.

I recently raised these issues in my article “Eating the world: the growing importance of software security”. In that article, I predicted an imminent sea-change in the attitude which users tend to display towards the possibility of software security vulnerabilities. The attitude will change from complacency into purposeful alarm. Companies which are slow to respond to this change in attitude will find their products discarded by users – regardless of how many “cool” features they contain. Security is going to trump functionality, in a way it hasn’t done previously.

One company that has long been aware of this trend is Redbend (which was acquired by HARMAN in summer 2015). They’ve been thinking hard for more than a dozen years about the dynamics of OTA (over the air, i.e. wireless) software updates. Software updates are as much of a fact of life as software bugs – in fact, more so. Updates deliver fixes to bugs in previous versions; they also roll out new functionality. A good architecture for efficient, robust, secure software updates is, therefore, a key differentiator:

  • The efficiency of an update means that it happens quickly, with minimal data costs, and minimal time inconvenience to users
  • The robustness of an update means that, even if the update were to be interrupted partway through, the device will remain in a usable state
  • The security of an update means that it will reliably deliver software that is valid and authentic, rather than some “Trojan horse” malware masquerading as bona-fide.

According to my email archives, my first meeting with representatives of Redbend was as long ago as December 2002. At that time, I was Executive VP at Symbian with responsibility for Partnering. Since Redbend was one of the new “Platinum Partners” of Symbian, I took the time to learn more about their capabilities.

One person I met in these initial meetings was Gil Cordova, at that time Director of Strategic Marketing at Redbend. Gil wrote to me afterwards, confirming our common view as to what lay ahead in the future:

Redbend deals with an enabling technology and solution for OTA updating of mobile devices.

Our solution enables device manufacturers and operators to update any part of the device software including OS, middleware systems and applications.

The solution is based on our patented technology for creating delta-updates which minimize the update package size ensuring it can be cost-effectively sent and stored on the device with little bandwidth and memory consumption. In addition we enable the update to occur within the device memory constraints ensuring no cost-prohibitive memory needs to be added…

OTA updates can help answer the needs of remote software repair and fixing to the device software, as well as streamline logistics when deploying devices…

At that time, some dozen years ago, the idea that mobile phones would have more and more software in them was still relatively new – and was far from being widely accepted as a good thing. But Redbend and Symbian foresaw the consequences, as in the final paragraph of Gil’s email to me:

All the above points to the fact that if software is a new paradigm in the industry then OTA updating is a very crucial and strategic issue that must be taken into account.

OTA has, indeed, been an important issue since that time. But it’s my view that the full significance is only now becoming apparent. As security is poised to “eat the world”, efficient and reliable OTA capabilities will grow yet further in importance. It will be something that more and more companies will need to include at the heart of their own product offerings. The world will insist on it.

A few days ago, I took a closer look at recent news from HARMAN connected services – in particular at its architecture for cybersecurity. I saw a great deal that I liked:

Secure Car

  • Domain isolation – to provide a strict separation between different subsystems (e.g. parts of the overall software system on a car), with the subsystems potentially running different operating systems
  • Type-1 hypervisor – to isolate different subsystems from hardware resources, except when such access is explicitly designed
  • Driver virtualization – to allow additional peripherals (such as Wi-Fi, cameras, Bluetooth, and GPS) to be added quickly into an existing device with the same secure architecture
  • Software update systems – to enable separate remote software management for the head (dashboard) unit, telematics (black-box) unit, and numerous ECUs (engine control units) – with a 100% success record in deploying updates on more than one million vehicles
  • State of the art FIPS (Federal Information Processing Standard) encryption – applied to the entirety of the update process
  • Intrusion Detection and Prevention systems – to identify and report any malicious or erroneous network activity, and to handle the risks arising before the car or any of its components suffers any ill-effect.

I know from my own background in designing software systems that this kind of all-points-considered security cannot be tacked onto an existing system. Provision for it needs to be designed in from the beginning. That’s where Redbend’s long heritage in this space shows its value.

The full benefit of taking an architectural approach to secure software updates – as opposed to trying to fashion security on top of fundamentally insecure components – is that the same architecture is capable of re-use in different domains. It’s therefore no surprise that Redbend software management solutions are available, not only for connected cars, but also for wearable computers, connected homes, and machine-to-machine (M2M) devices.

Of course, despite all these precautions, I expect the security arms race to continue. Software will continue to have bugs, and the cybercrime industry will continue to find ingenious ways to exploit these bugs. The weakest part of any security system, indeed, is frequently the humans involved, who can fall victim to social engineering. In turn, providers of security software are seeking to improve the usability of their systems, to reduce both the likelihood and the impact of human operator error.

This race probably has many laps to run, with new surprises ahead on each lap. To keep ahead, we need allies and partners who constantly look ahead, straining to discern the forthcoming new battlegrounds, and to prepare new defences in sufficient time. But we also need to avail ourselves of the best present tools, so that our businesses have the best chance of avoiding being eaten in the meantime. Figuring out which security tools really are best in class is fast becoming a vital core competency for people in ever-growing numbers of industries.

Footnote: I was inspired to write this post after discussions with some industry colleagues involved in HARMAN’s Engineering a Connected Life program. The views and opinions expressed in this post are my own and don’t necessarily represent HARMAN’s positions, strategies or opinions.

10 May 2015

When the future of smartphones was in doubt

It’s hard to believe it now. But ten years ago, the future of smartphones was in doubt.

At that time, I wrote these words:

Smartphones in 2005 are roughly where the Internet was in 1995. In 1995, there were, worldwide, around 20-40 million users of the Internet. That’s broadly the same number of users of smartphones there are in the world today. In 1995, people were debating the real value of Internet usage. Was it simply an indulgent plaything for highly technical users, or would it have lasting wider attraction? In 2005, there’s a similar debate about smartphones. Will smartphones remain the preserve of a minority of users, or will they demonstrate mass-market appeal?

That was the opening paragraph in an essay which the Internet site Archive.org has preserved. The original location for the essay, the Symbian corporate website, has long since been retired, having been absorbed inside Nokia infrastructure in 2009 (and, perhaps, being absorbed in turn into Microsoft in 2014).

Symbian Way Back

The entire essay can be found here, warts and all. That essay was the first in a monthly series known as “David Wood Insight” which extended from September 2005 to September 2006. (The entire set still exists on Archive.org – and, for convenience, I’ve made a copy here.)

Ten years later, it seems to me that wearable computers in 2015 are roughly where smartphones were in 2005 (and where the Internet was in 1995). There’s considerable scepticism about their future. Will they remain the preserve of a minority of users, or will they demonstrate mass-market appeal?

Some commentators look at today’s wearable devices, such as Google Glass and Apple Watch, and express disappointment. There are many ways these devices can be criticised. They lack style. They lack “must have” functionality. Their usability leaves a lot to be desired. Battery life is too short. And so on.

But, like smartphones before them – and like the world-wide web ten years earlier – they’re going to get much, much better as time passes. Positive feedback cycles will ensure that happens.

I share the view of Augmented Reality analyst Ori Inbar, who wrote the following a few months ago in an updated version of his “Smart Glasses Market Report”:

When contemplating the evolution of technology in the context of the evolution of humanity, augmented reality (AR) is inevitable.

Consider the innovation cycles of computing from mainframes, to personal computers, to mobile computing, to wearables: It was driven by our need for computers to get smaller, better, and cheaper. Wearables are exactly that – mini computers on track to shrink and disappear on our bodies. In addition, there is a fundamental human desire for larger and sharper displays – we want to see and feel the world at a deeper level. These two trends will be resolved with Augmented Reality; AR extends our natural senses and will become humans’ primary interface for interaction with the world.

If the adoption curve of mobile phones is to repeat itself with glasses – within 10 years, over 1 billion humans will be “wearing.”

The report is packed with insight – I fully recommend it. For example, here’s Ori’s depiction of four waves of adoption of smart glasses:

Smart Glasses Adoption

(For more info about Augmented Reality and smart glasses, readers may be interested in the forthcoming Augmented World Expo, held 8-10 June at the Santa Clara Convention Centre in Silicon Valley.)

What about ten more years into the future?

All being well, here’s what I might be writing some time around 2025, foreseeing the growing adoption of yet another wave of computers.

If 1995-2005 saw the growth of desktop and laptop computers and the world wide web, 2005-2015 saw the growing ubiquity of smartphones, and 2015-2025 will see the triumph of wearable computers and augmented reality, then 2025-2035 is likely to see the increasingly widespread usage of nanobots (nano-computers) that operate inside our bodies.

The focus of computer innovation and usage will move from portables to mobiles to wearables to insideables.

And the killer app of these embedded nanobots will be internal human enhancement:

  • Biological rejuvenation
  • Body and brain repair
  • Body and brain augmentation.

By 2025, these applications will likely be in an early, rudimentary state. They’ll be buggy, irritating, and probably expensive. With some justification, critics will be asking: Will nanobots remain the preserve of a minority of users, or will they demonstrate mass-market appeal?

7 September 2014

Beyond ‘Smartphones and beyond’

You techno-optimists don’t understand how messy real-life projects are. You over-estimate the power of technology, and under-estimate factors such as sociology, psychology, economics, and biology – not to mention the cussed awkwardness of Murphy’s Law.

That’s an example of the kind of retort that has frequently come to my ears in the last few years. I have a lot of sympathy for that retort.

I don’t deny being an optimist about what technology can accomplish. As I see things:

  • Human progress has taken place by the discovery and adoption of engineering solutions – such as fire, the wheel, irrigation, sailing ships, writing, printing, the steam engine, electricity, domestic kitchen appliances, railways and automobiles, computers and the Internet, plastics, vaccinations, anaesthetic, contraception, and better hygiene
  • Forthcoming technological improvements can propel human experience onto an even higher plane – with our minds and bodies both being dramatically enhanced
  • As well as making us stronger and smarter, new technology can help us become kinder, more collaborative, more patient, more empathetic, less parochial, and more aware of our cognitive biases and blindspots.

But equally, I see lots of examples of technology failing to live up to the expectations of techno-optimists. It’s not just that technology is a two-edged sword, and can scar as well as salve. And it’s not just that technology is often mis-employed in search of a “techno-solution” when a piece of good old-fashioned common sense could result in a better approach. It’s that new technologies – whether ideas for new medical cures, new sustainable energy sources, improved AI algorithms, and so on – often take considerably longer than expected to create useful products. Moreover, these products often have weaker features or poorer quality than anticipated.

Here’s an example of technology slowdown. A 2012 article in Nature coined the clever term “Eroom’s Law” to describe a steady decline in productivity of R&D research in new drug discovery:

Diagnosing the decline in pharmaceutical R&D efficiency

Jack W. Scannell, Alex Blanckley, Helen Boldon & Brian Warrington

The past 60 years have seen huge advances in many of the scientific, technological and managerial factors that should tend to raise the efficiency of commercial drug research and development (R&D). Yet the number of new drugs approved per billion US dollars spent on R&D has halved roughly every 9 years since 1950, falling around 80-fold in inflation-adjusted terms.

In other words, although the better-known Moore’s Law describes a relatively steady increase in computational power, Eroom’s Law describes a relatively steady decrease in the effectiveness of research and development within the pharmaceutical industry. By the way, Eroom isn’t a person: it’s Moore spelt backwards.

The statistics are bleak, as can be seen in a graph from Derek Lowe’s In the pipeline blog:

R&D trend

But despite this dismal trend, I still see plenty of reason for measured optimism about the future of technology. That’s despite the messiness of real-world projects, out-dated regulatory and testing systems, perverse incentive schemes, institutional lethargy, and inadequate legacy platforms.

This measured optimism comes to the surface in the later stages of the book I have just e-published, at the end of a two-year period of writing it. The book is entitled Smartphones and beyond: lessons from the remarkable rise and fall of Symbian.

As I write in the opening chapter of that book (an excerpt is available online):

The story of the evolution of smartphones is fascinating in its own right – for its rich set of characters, and for its colourful set of triumphs and disasters. But the story has wider implications. Many important lessons can be drawn from careful review of the successes and, yes, the failures of the smartphone industry.

When it comes to the development of modern technology, things are rarely as simple as they first appear. Some companies bring great products to the market, true. These companies are widely lauded. But the surface story of winners and losers can conceal many twists and turns of fortune. Behind an apparent sudden spurt of widespread popularity, there frequently lies a long gestation period. The eventual blaze of success was preceded by the faltering efforts of many pioneers who carved new paths into uncertain terrain. The steps and missteps of these near-forgotten pioneers laid the foundation for what was to follow.

So it was for smartphones. It is likely to be the same with many of the other breakthrough technologies that have the potential to radically transform human experience in the decades ahead. They are experiencing their missteps too.

I write this book as an ardent fan of the latent power of modern technology. I’ve seen smartphone technology playing vital roles in the positive transformation of human experience, all over the world. I expect other technologies to play even more radical roles in the near future – technologies such as wearable computing, 3D printing, synthetic biology, nanotechnology, neuro-enhancement, rejuvenation biotech, artificial intelligence, and next generation robotics. But, as with smartphones, there are likely to be many disappointments en route to eventual success. Indeed, even the “eventual success” cannot be taken for granted.

General principles about the progress of complex technology emerge from reflecting on the details of actual examples. These details – the “warts and all”, to use the phrase attributed to Oliver Cromwell – can confound naive notions as to how complex technology should be developed and applied. As I’ll show from specific examples in the chapters ahead, the details show that failure and success often co-exist closely within the same project. A single project often contains multiple layers, belonging to numerous different chains of cause and effect.

It is my sincere hope that an appreciation of real-world examples of these multiple layers of smartphone development projects will enable a better understanding of how to guide the future evolution of other forms of smart technology. I’ll describe what I call “the core smartphone skillset”, comprising excellence in the three dimensions of “platforms”, “marketing”, and “execution”. To my mind, these are the key enablers of complex technological progress. These enablers have a critical role to play for smartphones, and beyond. Put together well, these enablers can climb mountains.

I see the core smartphone skillset as having strong applicability in wider technological areas. That skillset provides the basis for overcoming the various forms of inertia which are holding back the creation of important new solutions from emerging technologies. The existence of that skillset underlies my measured optimism in the future.

But there’s nothing inevitable about how things will turn out. The future holds many potential scenarios, with varying degrees of upside and downside. The question of which scenarios will become actual, depends on inspired human vision, choice, action, and follow-through. Fortune sometimes hinges on the smallest of root causes. Effects can then cascade.

Hits and misses

As well as the description of the core smartphone skillset” – which I see as having strong applicability in wider technological areas – the book contains my thoughts as the things that Symbian did particularly well over the years, resulting in it becoming the leading smartphone operating system for many years in the first decade of this century:

  1. Investors and supporters who were prepared to take a long-term view of their investments
  2. Regular deliveries against an incremental roadmap
  3. Regularly taking the time to improve the architecture of the software and the processes by which it was delivered
  4. High calibre software development personnel
  5. Cleanly executed acquisitions to boost the company’s talent pool
  6. Early and sustained identification of the profound importance of smartphones
  7. Good links with the technology foresight groups and other roadmap planning groups within a range of customers
  8. A product that was open to influence, modification, and customisation by customers
  9. Careful attention given to enabling an ecosystem of partners
  10. An independent commercial basis for the company, rather than it being set up as a toothless “customers’ cooperative”
  11. Enabling competition.

Over the course of that time, Symbian:

  • Opened minds as to what smartphones could accomplish. In particular, people realised that there was much more they could do with mobile phones, beyond making phone calls. This glimpse encouraged other companies to enter this space, with alternative smartphone platforms that achieved, in the end, considerably greater success
  • Developed a highly capable touch UI platform (UIQ), years before Android/iPhone
  • Supported a rich range of different kinds of mobile devices, all running versions of the same underlying software engine; in particular, Symbian supported the S60 family of devices with its ergonomically satisfying one-handed operating mode
  • Achieved early demonstrations of breakthrough capabilities for mobile phones, including streaming multimedia, smooth switching between wifi and cellular networks, maps with GPS updates, the use of a built-in compass and accelerometer, and augmented reality – such as in the 2003 “Mozzies” (“Mosquitos”) game for the Siemens SX1
  • Powered many ground-breaking multimedia smartphones, imaging smartphones, business smartphones, and fashion smartphones
  • Achieved sales of some 500 million units – with the majority being shipped by Nokia, but with 40 million being shipped inside Japan from 2003 onwards, by Fujitsu, Sharp, Mitsubishi, and Sony Ericsson
  • Held together an alliance of competitors, among the set of licensees and partners of Symbian, with the various companies each having the opportunity to benefit from solutions initially developed with some of their competitors in mind
  • Demonstrated that mobile phones could contain many useful third party applications, without at the same time becoming hotbeds of viruses
  • Featured in some of the best-selling mobile phones of all time, up till then, such as the Nokia 5230, which sold 150 million units.

Alongside the list of “greatest hits”, the book also contains a (considerably longer) list of “greatest misses”, “might-have-beens”, and alternative histories. The two lists are distilled from wide-ranging “warts and all” discussions in earlier chapters of the book, featuring many excerpts from my email and other personal archives.

LFS cover v2

To my past and present colleagues from the Symbian journey, I offer my deep thanks for all their contributions to the creation of modern smartphones. I also offer my apologies for cases when my book brings back memories of episodes that some participants might prefer to forget. But Symbian’s story is too important to forget. And although there is much to regret in individual actions, there is much to savour in the overall outcome. We can walk tall.

The bigger picture now is that other emerging technology sectors risk repeating the stumbles of the smartphone industry. Whereas the smartphone industry recovered from its early stumbles, these other industries might not be so fortunate. They may die before they get off the ground. Their potential benefits might remain forever out of grasp, or be sorely delayed.

If the unflattering episodes covered in Smartphones and beyond can help increase the chance of these new technology sectors addressing real human need quickly, safely, and fully, then I believe it will be worth all the embarrassment and discomfort these episodes may cause to Symbian personnel – me included. We should be prepared to learn from one of the mantras of Silicon Valley: “embrace failure”. Reflecting on failure can provide the launchpad for greater future success, whether in smartphones, or beyond.

Early reviewers of the book have commented that the book is laden with lessons, from the pioneer phase of the smartphone industry, for the nascent technology sectors where they are working – such as wearable computing, 3D printing, social robots, and rejuvenation biotechnology. The strength of these lessons is that they are presented, in this book, in their multi-dimensional messiness, with overlapping conflicting chains of cause and effect, rather than as cut-and-dried abstracted principles.

In that the pages of Smartphones and beyond, I do choose to highlight some specific learnings from particular episodes of smartphone success or smartphone failure. Some lessons deserve to be shouted out. For other episodes, I leave it to readers to reach their own conclusions. In yet other cases, frankly, it’s still not clear to me what lessons should be drawn. Writers who follow in my tracks will no doubt offer their own suggestions.

My task in all these cases is to catalyse a discussion, by bringing stories to the table that have previously lurked unseen or under-appreciated. My fervent hope is that the discussion will make us all collectively wiser, so that emerging new technology sectors will proceed more quickly to deliver the profound benefits of which they are capable.

Some links

For an extended series of extracts from the different chapters in Smartphones and beyond, see the official website for the book.

The book is available for Kindle download from Amazon: UK site and International (US) site.

  • Note that readers without Kindle devices can read the book on a convenient app on their PC or tablet (or smartphone!) – these apps are freely available.

I haven’t created a hard-copy print version. The book would need to be split into three parts to make it physically convenient. Far better, in my view, to be able to carry the book on a light electronic device, with “search” and “bookmark” facilities that very usefully augment the reading experience.

Opportunities to improve

Smartphones and beyond no doubt still contains a host of factual mistakes, errors in judgement, misattributions, personal biases, blind spots, and other shortcomings. All these faults are the responsibility of the author. To suggest changes, either in an updated edition of this book or in some other follow-up project, please get in touch.

Where the book includes copies of excerpts from Internet postings, I have indicated the online location where the original article could be found at the time of writing. In case an article has moved or been deleted since then, it can probably be found again via search engines or the Internet archive, https://archive.org/. If I have inadvertently failed to give due credit to an original writer, or if I have included more text than the owner of the original material wishes, I will make amends in a later edition, upon reasonable request. Quoted information where no source is explicitly indicated is generally taken from copies of my emails, memos in my electronic diary, or other personal archives.

One of the chapters of this book is entitled “Too much openness”. Some readers may feel I have, indeed, been too open with some of the material I have shared. However, this material is generally at least 3-5 years old. Commercial lines of business no longer depend on it remaining secret. So I have applied a historian’s licence. We can all become collectively wiser by discussing it now.

Footnote

Finally, one other apology is due. As I’ve given my attention over the last few months to completing Smartphones and beyond, I’ve deprioritised many other tasks, and have kept colleagues from various important projects waiting for longer than they expected. I can’t promise that I’ll be able to pick up all these other pieces quickly again – that kind of overcommitment is one of the failure modes discussed throughout Smartphones and beyond. But I feel like I’m emerging for a new phase of activity – “Beyond ‘Smartphones and Beyond'”.

To help transition to that new phase, I’ve moved my corporate Delta Wisdom website to a new format (WordPress), and rejigged what had become rather stale content. It’s time for profound change.

Banner v6

 

6 September 2014

Smartphones and the mass market: the view from 2005

Filed under: insight, openness, smartphones, Symbian — Tags: , , — David Wood @ 7:07 am

The following article was originally published in the “David Wood Insight” series on Symbian’s corporate website, on 11 Sept 2005 (the first article in that series). I’m re-posting it here now since:

  • It’s one of a number of pages in an old website of mine that I am about to retire – so the article needs a new home
  • The message is aligned with many that are included in my book “Smartphones and beyond” that was published earlier this week.

Smartphones and the mass market

Smartphones in 2005 are roughly where the Internet was in 1995. In 1995, there were, worldwide, around 20-40 million users of the Internet. That’s broadly the same number of users of smartphones there are in the world today. In 1995, people were debating the real value of Internet usage. Was it simply an indulgent plaything for highly technical users, or would it have lasting wider attraction? In 2005, there’s a similar debate about smartphones. Will smartphones remain the preserve of a minority of users, or will they demonstrate mass-market appeal?

Personally, I have no doubt as to the answer. Smartphones are for all. Smartphones – the rapidly emerging new category of advanced computer-based programmable mobile phones – will appeal to all users of mobile phones worldwide. Smartphones are built from highly advanced technology, but they won’t require a highly advanced understanding of technology in order to use them. You won’t need to be a computer whiz kid or the neighbourhood geek to get real value from a smartphone. Nor will you need a huge income to afford one. Smartphones will help us all to keep in better touch with the friends and colleagues and information and discussions and buzz that are important to us, and they are opening up new avenues for entertainment, education, and enterprise alike. Smartphones will help us all to work hard and play hard. And in line with their name, smartphones will also help us to work smart and play smart.

Smartphones differ from ordinary mobile phones in two fundamental ways: how they are built, and what they can do. The way they’re built – using open systems to take advantage of the skills, energy, and innovation of numerous companies from a vast range of industries – means that smartphones extend the phenomenal track record of mobile phones by improving constantly and rapidly, year by year. As for what they can do – in line with the “phone” part of their name, smartphones provide all the capabilities of ordinary mobile phones, in a particularly user-friendly style – but that’s only the start. In addition, smartphones increasingly use their computer-brains and network-connectivity to:

  • Excel at all sorts of communication – instant messaging, email, video conferencing, and more
  • Help us to organise our to-do lists, ideas, calendars, contacts, expenses, and finances
  • Boost our effectiveness in our business life – connecting us smoothly into corporate data systems
  • Entertain us with huge libraries of first-rate music, mobile TV, social networking, and games
  • Guide us around the real world, with maps and location-based services, so we never get lost again
  • Subsume our keys, ID cards, tickets, and wallets – so we can leave these old-world items at home
  • Connect us into online information banks covering every topic under the sun.

In short, smartphones are rapidly becoming our preferred mobile gateway into the ever growing, ever more important digital universe.

In 1995, some people wondered if the Internet would ever really be “useful” (as opposed to a passing fad). Today, you may wonder if mobile access to the Internet will ever really be useful. But if you look at what smartphone users are already able to do, you’ll soon see the benefit. If it’s valuable to you to be able to access bbcnews.com or amazon.com or ebay.com or betfair.com or imdb.com or google.com or wikipedia.org (etc) from your desktop PC, you’ll often find it equally valuable to check these sites when you’re away from your desktop. Because you’ll be carrying your smartphone with you, almost everywhere you go, you’ll have the option to keep in touch with your digital universe, whenever it suits you.

Crucial to this increase in value is the steady set of remarkable improvements that have taken place for both output and input mechanisms on smartphones. Screens have become clearer, larger, sharper, and more colourful. Intelligent handwriting recognition systems, word-completion systems, multi-way jog-dials, Bluetooth keyboards, and ingenious folding and twisting mechanisms, mean that it’s easier than ever before to enter data into smartphones. And faster networks, more powerful on-board processors, and more sophisticated software, mean that “www” on a smartphone no longer means “world wide wait” but rather “world wide wow“.

In parallel, costs are dipping, further and further. In part, this is due to Moore’s Law, which summarises the steady technological improvements in the design and manufacture of integrated circuits and memory chips. But in large part, it’s also due to the dramatic “learning effects” which can take place when world-class companies go through several rounds of finding better and better ways to manufacture their smartphone products. In turn, the magnitude of these “learning effects” depends on the open nature of the smartphone industry. Here, the word “open” has the following meanings:

  • Programmable: the intelligence and power that is in a smartphone can be adapted, extended, and enhanced by add-on applications and services, which tap into the underlying richness of the phone to produce powerful new functionality
  • Interchangeable: services that are designed for use in one smartphone can be deployed on other smartphones as well, from different manufacturers (despite the differences between these smartphones), with minimal (often zero) changes; very importantly, this provides a better incentive to companies to invest the effort to create these new services
  • Collaborative: the process of creating and evolving smartphone products benefits from the input and ideas of numerous companies and individuals; for example, the manufacturers of the second generation of a given smartphone can build in some of the unexpectedly successful applications that were designed by previously unknown companies as add-ons to the first generation of that smartphone
  • Open-minded: the companies who create smartphones have their own clear ideas about how smartphones should operate and what they should contain, but newcomers have ample means and encouragement to introduce different concepts – the industry is ready to accept new ideas
  • Free-flowing: the success of a company in the smartphone industry is substantially determined by its skills with innovation, technology, marketing, and operations, rather than any restrictive contractual lock-ins or accidents of location or history.

In all these cases, the opposite to “open” is “closed”. More specifically, the opposite of the successful smartphone industry would see:

  • Fixed functionality, that changes only slowly and/or superficially
  • Non-standard add-ons, that are each restricted to a small subset of phones
  • Overly competitive companies, whose fierce squabbles would destroy the emerging market before it has time to take root
  • Closed-minded companies who are misguidedly convinced that they have some kind of divine right to act as “benign dictators” for the sake of the industry
  • Bottlenecks and chokes that strangle or restrict innovation.

Foreseeing the risks of a closed approach to smartphone development, the mobile phone industry came together to create Symbian, seven years ago. The name “Symbian” is derived from the biological term “symbiosis”, emphasising the positive aspects of collaboration. Symbian’s motto is “cooperate before competing”. It’s no surprise that the vast majority of today’s smartphones utilise Symbian OS.

The volumes of smartphones in circulation are already large enough to trigger a tipping point – more and more industry players, across diverse fields, are choosing Symbian OS to deploy their new solutions. And at the same time as manufacturers are learning how to provide smartphone solutions ever more affordably, users are learning (and then sharing) surprising new ways they can take advantage of the inner capability and richness of their smartphones. It’s a powerful virtuous cycle. That’s the reason why each new generation of smartphone product has a wider appeal.

Footnote (2014): The site http://www.symbian.com has long since been decommissioned, but some of its content can be retrieved from archive.org. After some sleuthing, I tracked down a copy of the above article here.

Blog at WordPress.com.