dw2

15 May 2022

A year-by-year timeline to 2045

The ground rules for the worldbuilding competition were attractive:

  • The year is 2045.
  • AGI has existed for at least 5 years.
  • Technology is advancing rapidly and AI is transforming the world sector by sector.
  • The US, EU and China have managed a steady, if uneasy, power equilibrium.
  • India, Africa and South America are quickly on the ride as major players.
  • Despite ongoing challenges, there have been no major wars or other global catastrophes.
  • The world is not dystopian and the future is looking bright.

Entrants were asked to submit four pieces of work. One was a new media piece. I submitted this video:

Another required piece was:

timeline with entries for each year between 2022 and 2045 giving at least two events (e.g. “X invented”) and one data point (e.g. “GDP rises by 25%”) for each year.

The timeline I created dovetailed with the framework from the above video. Since I enjoyed creating it, I’m sharing my submission here, in the hope that it may inspire readers.

(Note: the content was submitted on 11th April 2022.)

2022

US mid-term elections result in log-jammed US governance, widespread frustration, and a groundswell desire for more constructive approaches to politics.

The collapse of a major crypto “stablecoin” results in much wider adverse repercussions than was generally expected, and a new social appreciation of the dangers of flawed financial systems.

Data point: Number of people killed in violent incidents (including homicides and armed conflicts) around the world: 590,000

2023

Fake news that is spread by social media driven by a new variant of AI provokes riots in which more than 10,000 people die, leading to much greater interest a set of “Singularity Principles” that had previously been proposed to steer the development of potentially world-transforming technologies.

G7 transforms into the D16, consisting of the world’s 16 leading democracies, proclaiming a profound shared commitment to champion norms of: openness; free and fair elections; the rule of law; independent media, judiciary, and academia; power being distributed rather than concentrated; and respect for autonomous decisions of groups of people.

Data point: Proportion of world population living in countries that are “full democracies” as assessed by the Economist: 6.4%

2024

South Korea starts a trial of a nationwide UBI scheme, in the first of what will become in later years a long line of increasingly robust “universal citizens’ dividends” schemes around the world.

A previously unknown offshoot of ISIS releases a bioengineered virus. Fortunately, vaccines are quickly developed and deployed against it. In parallel, a bitter cyber war takes place between Iran and Israel. These incidents lead to international commitments to prevent future recurrences.

Data point: Proportion of people of working age in US who are not working and who are not looking for a job: 38%

2025

Extreme weather – floods and storms – kills 10s of 1000s in both North America and Europe. A major trial of geo-engineering is rushed through, with reflection of solar radiation in the stratosphere – causing global political disagreement and then a renewed determination for tangible shared action on climate change.

The US President appoints a Secretary for the Future as a top-level cabinet position. More US states adopt rank choice voting, allowing third parties to grow in prominence.

Data point: Proportion of earth’s habitable land used to rear animals for human food: 38%

2026

A song created entirely by an AI tops the hit parade, and initiates a radical new musical genre.

Groundswell opposition to autocratic rule in Russia leads to the fall from power of the president and a new dedication to democracy throughout countries formerly perceived as being within Russia’s sphere of direct influence.

Data point: Net greenhouse gas emissions (including those from land-use changes): 59 billion tons of CO2 equivalent – an unwelcome record.

2027

Metformin approved for use as an anti-aging medicine in a D16 country. Another D16 country recommends nationwide regular usage of a new nootropic drug.

Exchanges of small numbers of missiles between North and South Korea leads to regime change inside North Korea and a rapprochement between the long-bitter enemies.

Data point: Proportion of world population living in countries that are “full democracies” as assessed by the Economist: 9.2%

2028

An innovative nuclear fusion system, with its design assisted by AI, runs for more than one hour and generates significantly more energy out than what had been put in.

As a result of disagreements about the future of an independent Taiwan, an intense destructive cyber battle takes place. At the end, the nations of the world commit more seriously than before to avoiding any future cyber battles.

Data point: Proportion of world population experiencing mental illness or dissatisfied with the quality of their mental health: 41%

2029

A trial of an anti-aging intervention in middle-aged dogs is confirmed to have increased remaining life expectancy by 25% without causing any adverse side effects. Public interest in similar interventions in humans skyrockets.

The UK rejoins a reconfigured EU, as an indication of support for sovereignty that is pooled rather than narrow.

Data point: Proportion of world population with formal cryonics arrangements: 1 in 100,000

2030

Russia is admitted into the D40 – a newly expanded version of the D16. The D40 officially adopts “Index of Human Flourishing” as more important metric than GDP, and agrees a revised version of the Universal Declaration of Human Rights, brought up to date with transhuman issues.

First permanent implant in a human of an artificial heart with a new design that draws all required power from the biology of the body rather than any attached battery, and whose pace of operation is under the control of the brain.

Data point: Net greenhouse gas emissions (including those from land-use changes): 47 billion tons of CO2 equivalent – a significant improvement

2031

An AI discovers and explains a profound new way of looking at mathematics, DeepMath, leading in turn to dramatically successful new theories of fundamental physics.

Widespread use of dynamically re-programmed nanobots to treat medical conditions that would previously have been fatal.

Data point: Proportion of world population regularly taking powerful anti-aging medications: 23%

2032

First person reaches the age of 125. Her birthday celebrations are briefly disrupted by a small group of self-described “naturality advocates” who chant “120 is enough for anyone”, but that group has little public support.

D40 countries put in place a widespread “trustable monitoring system” to cut down on existential risks (such as spread of WMDs) whilst maintaining citizens’ trust.

Data point: Proportion of world population living in countries that are “full democracies” as assessed by the Economist: 35.7% 

2033

For the first time since the 1850s, the US President comes from a party other than Republican and Democratic.

An AI system is able to convincingly pass the Turing test, impressing even the previous staunchest critics with its apparent grasp of general knowledge and common sense. The answers it gives to questions of moral dilemmas also impress previous sceptics.

Data point: Proportion of people of working age in US who are not working and who are not looking for a job: 58%

2034

The D90 (expanded from the D40) agrees to vigorously impose Singularity Principles rules to avoid inadvertent creation of dangerous AGI.

Atomically precise synthetic nanoscale assembly factories have come of age, in line with the decades-old vision of nanotechnology visionary Eric Drexler, and are proving to have just as consequential an impact on human society as AI.

Data point: Net greenhouse gas *removals*: 10 billion tons of CO2 equivalent – a dramatic improvement

2035

A novel written entirely by an AI reaches the top of the New York Times bestseller list, and is widely celebrated as being the finest piece of literature ever produced.

Successful measures to remove greenhouse gases from the atmosphere, coupled with wide deployment of clean energy sources, lead to a declaration of “victory over runaway climate change”.

Data point: Proportion of earth’s habitable land used to rear animals for human food: 4%

2036

A film created entirely by an AI, without any real human actors, wins Oscar awards.

The last major sceptical holdout, a philosophy professor from an Ivy League university, accepts that AGI now exists. The pope gives his blessing too.

Data point: Proportion of world population with cryonics arrangements: 24%

2037

The last instances of the industrial scale slaughter of animals for human consumption, on account of the worldwide adoption of cultivated (lab-grown) meat.

AGI convincingly explains that it is not sentient, and that it has a very different fundamental structure from that of biological consciousness.

Data point: Proportion of world population who are literate: 99.3%

2038

Rejuvenation therapies are in wide use around the world. “Eighty is the new fifty”. First person reaches the age of 130.

Improvements made by AGI upon itself effectively raise its IQ one hundred fold, taking it far beyond the comprehension of human observers. However, the AGI provides explanatory educational material that allows people to understand vast new sets of ideas.

Data point: Proportion of world population who consider themselves opposed to AGI: 0.1%

2039

An extensive set of “vital training” sessions has been established by the AGI, with all citizens over the age of ten participating for a minimum of seven hours per day on 72 days each year, to ensure that humans develop and maintain key survival skills.

Menopause reversal is common place. Women who had long ago given up any ideas of bearing another child happily embrace motherhood again.

Data point: Proportion of world population regularly taking powerful anti-aging medications: 99.2%

2040

The use of “mind phones” is widespread: new brain-computer interfaces that allow communication between people by mental thought alone.

People regularly opt to have several of their original biological organs replaced by synthetic alternatives that are more efficient, more durable, and more reliable.

Data point: Proportion of people of working age in US who are not working and who are not looking for a job: 96%

2041

Shared immersive virtual reality experiences include hyper-realistic simulations of long-dead individuals – including musicians, politicians, royalty, saints, and founders of religions.

The number of miles of journey undertaken by small “flying cars” exceeds that of ground-based powered transport.

Data point: Proportion of world population living in countries that are “full democracies” as assessed by the Economist: 100.0%

2042

First successful revival of mammal from cryopreservation.

AGI presents a proof of the possibility of time travel, but the resources required for safe transit of humans through time would require the equivalent of building a Dyson sphere around the sun.

Data point: Proportion of world population experiencing mental illness or dissatisfied with the quality of their mental health: 0.4%

2043

First person reaches the age of 135, and declares herself to be healthier than at any time in the preceding four decades.

As a result of virtual reality encounters of avatars of founders of religion, a number of new systems of philosophical and mystical thinking grow in popularity.

Data point: Proportion of world’s energy provided by earth-based nuclear fusion: 75%

2044

First human baby born from an ectogenetic pregnancy.

Family holidays on the Moon are an increasingly common occurrence.

Data point: Average amount of their waking time that people spend in a metaverse: 38%

2045

First revival of human from cryopreservation – someone who had been cryopreserved ten years previously.

Subtle messages decoded by AGI from far distant stars in the galaxy confirm that other intelligent civilisations exist, and are on their way to reveal themselves to humanity.

Data point: Number of people killed in violent incidents around the world: 59

Postscript

My thanks go to the competition organisers, the Future of Life Institute, for providing the inspiration for the creation of the above timeline.

Readers are likely to have questions in their minds as they browse the timeline above. More details of the reasoning behind the scenarios involved are contained in three follow-up posts:

7 February 2022

Options for controlling artificial superintelligence

What are the best options for controlling artificial superintelligence?

Should we confine it in some kind of box (or simulation), to prevent it from roaming freely over the Internet?

Should we hard-wire into its programming a deep respect for humanity?

Should we avoid it from having any sense of agency or ambition?

Should we ensure that, before it takes any action, it always double-checks its plans with human overseers?

Should we create dedicated “narrow” intelligence monitoring systems, to keep a vigilant eye on it?

Should we build in a self-destruct mechanism, just in case it stops responding to human requests?

Should we insist that it shares its greater intelligence with its human overseers (in effect turning them into cyborgs), to avoid humanity being left behind?

More drastically, should we simply prevent any such systems from coming into existence, by forbidding any research that could lead to artificial superintelligence?

Alternatively, should we give up on any attempt at control, and trust that the superintelligence will be thoughtful enough to always “do the right thing”?

Or is there a better solution?

If you have clear views on this question, I’d like to hear from you.

I’m looking for speakers for a forthcoming London Futurists online webinar dedicated to this topic.

I envision three speakers each taking up to 15 minutes to set out their proposals. Once all the proposals are on the table, the real discussion will begin – with the speakers interacting with each other, and responding to questions raised by the live audience.

The date for this event remains to be determined. I will find a date that is suitable for the speakers who have the most interesting ideas to present.

As I said, please get in touch if you have questions or suggestions about this event.

Image credit: the above graphic includes work by Pixabay user Geralt.

PS For some background, here’s a video recording of the London Futurists event from last Saturday, in which Roman Yampolskiy gave several reasons why control of artificial superintelligence will be deeply difficult.

For other useful background material, see the videos on the Singularity page of the Vital Syllabus project.

1 March 2021

The imminence of artificial consciousness

Filed under: AGI, books, brain simulation, London Futurists — Tags: , , — David Wood @ 10:26 am

I’ve changed my mind about consciousness.

I used to think that, of the two great problems about artificial minds – namely, achieving artificial general intelligence, and achieving artificial consciousness – progress toward the former would be faster than progress toward the latter.

After all, progress in understanding consciousness had seemed particularly slow, whereas enormous numbers of researchers in both academia and industry have been attaining breakthrough after breakthrough with new algorithms in artificial reasoning.

Over the decades, I’d read a number of books by Daniel Dennett and other philosophers who claimed to have shown that consciousness was basically already understood. There’s nothing spectacularly magical or esoteric about consciousness, Dennett maintained. What’s more, we must beware being misled by our own introspective understanding of our consciousness. That inner introspection is subject to distortions – perceptual illusions, akin to the visual illusions that often mislead us about what we think our eyes are seeing.

But I’d found myself at best semi-convinced by such accounts. I felt that, despite the clever analyses in such accounts, there was surely more to the story.

The most famous expression of the idea that consciousness still defied a proper understanding is the formulation by David Chalmers. This is from his watershed 1995 essay “Facing Up to the Problem of Consciousness”:

The really hard problem of consciousness is the problem of experience. When we think and perceive, there is a whir of information-processing, but there is also a subjective aspect… There is something it is like to be a conscious organism. This subjective aspect is experience.

When we see, for example, we experience visual sensations: the felt quality of redness, the experience of dark and light, the quality of depth in a visual field. Other experiences go along with perception in different modalities: the sound of a clarinet, the smell of mothballs. Then there are bodily sensations, from pains to orgasms; mental images that are conjured up internally; the felt quality of emotion, and the experience of a stream of conscious thought. What unites all of these states is that there is something it is like to be in them. All of them are states of experience.

It is undeniable that some organisms are subjects of experience. But the question of how it is that these systems are subjects of experience is perplexing. Why is it that when our cognitive systems engage in visual and auditory information-processing, we have visual or auditory experience: the quality of deep blue, the sensation of middle C? How can we explain why there is something it is like to entertain a mental image, or to experience an emotion?

It is widely agreed that experience arises from a physical basis, but we have no good explanation of why and how it so arises. Why should physical processing give rise to a rich inner life at all? It seems objectively unreasonable that it should, and yet it does.

However, as Wikipedia notes,

The existence of a “hard problem” is controversial. It has been accepted by philosophers of mind such as Joseph Levine, Colin McGinn, and Ned Block and cognitive neuroscientists such as Francisco Varela, Giulio Tononi, and Christof Koch. However, its existence is disputed by philosophers of mind such as Daniel Dennett, Massimo Pigliucci, Thomas Metzinger, Patricia Churchland, and Keith Frankish, and cognitive neuroscientists such as Stanislas Dehaene, Bernard Baars, Anil Seth and Antonio Damasio.

With so many smart people apparently unable to agree, what hope is there for a layperson to have any confidence in an answering the question, is consciousness already explained in principle, or do we need some fundamentally new insights?

It’s tempting to say, therefore, that the question should be left to one side. Instead of squandering energy spinning circles of ideas with little prospect of real progress, it would be better to concentrate on numerous practical questions: vaccines for pandemics, climate change, taking the sting out of psychological malware, protecting democracy against latent totalitarianism, and so on.

That practical orientation is the one that I have tried to follow most of the time. But there are four reasons, nevertheless, to keep returning to the question of understanding consciousness. A better understanding of consciousness might:

  1. Help provide therapists and counsellors with new methods to address the growing crisis of mental ill-health
  2. Change our attitudes towards the suffering we inflict, as a society, upon farm animals, fish, and other creatures
  3. Provide confidence on whether copying of memories and other patterns of brain activity, into some kind of silicon storage, could result at some future date in the resurrection of our consciousness – or whether any such reanimation would, instead, be “only a copy” of us
  4. Guide the ways in which systems of artificial intelligence are being created.

On that last point, consider the question whether AI systems will somehow automatically become conscious, as they gain in computational ability. Most AI researchers have been sceptical on that score. Google Maps is not conscious, despite all the profoundly clever things that it can do. Neither is your smartphone. As for the Internet as a whole, opinions are a bit more mixed, but again, the general consensus is that all the electronic processing happening on the Internet is devoid of the kind of subjective inner experience described by David Chalmers.

Yes, lots of software has elements of being self-aware. Such software contains models of itself. But it’s generally thought (and I agree, for what it’s worth) that such internal modelling is far short of subjective inner experience.

One prospect this raises is the dark possibility that humans might be superseded by AIs that are considerably more intelligent than us, but that such AIs would have “no-one at home”, that is, no inner consciousness. In that case, a universe with AIs instead of humans might have much more information processing, but be devoid of conscious feelings. Mega oops.

The discussion at this point is sometimes led astray by the popular notion that any threat from superintelligent AIs to human existence is predicated on these AIs “waking up” or become conscious. In that popular narrative, any such waking up might give an AI an additional incentive to preserve itself. Such an AI might adopt destructive human “alpha male” combative attitudes. But as I say, that’s a faulty line of reasoning. AIs might well be motivated to preserve themselves without ever gaining any consciousness. (Look up the concept of “basic AI drives” by Steve Omohundro.) Indeed, a cruise missile that locks onto a target poses a threat to that target, not because the missile is somehow conscious, but because it has enough intelligence to navigate to its target and explode on arrival.

Indeed, AIs can pose threats to people’s employment, without these AIs gaining consciousness. They can simulate emotions without having real internal emotions. They can create artistic masterpieces, using techniques such as GANs (Generative Adversarial Networks), without having any real psychological appreciation of the beauty of these works of art.

For these reasons, I’ve generally urged people to set aside the question of machine consciousness, and to focus instead on the question of machine intelligence. (For example, I presented that argument in Chapter 9 of my book Sustainable Superabundance.) The latter is tangible and poses increasing threats (and opportunities), whereas the former is a discussion that never seems to get off the ground.

But, as I mentioned at the start, I’ve changed my mind. I now think it’s possible we could have machines with synthetic consciousness well before we have machines with general intelligence.

What’s changed my mind is the book by Professor Mark Solms, The Hidden Spring: A Journey to the Source of Consciousness.

Solms is director of neuropsychology in the Neuroscience Institute of the University of Cape Town, honorary lecturer in neurosurgery at the Royal London Hospital School of Medicine, and an honorary fellow of the American College of Psychiatrists. He has spent his entire career investigating the mysteries of consciousness. He achieved renown within his profession for identifying the brain mechanisms of dreaming and for bringing psychoanalytic insights into modern neuroscience. And now his book The Hidden Spring is bringing him renown far beyond his profession. Here’s a selection of the praise it has received:

  • A remarkably bold fusion of ideas from psychoanalysis, psychology, and the frontiers of theoretical neuroscience, that takes aim at the biggest question there is. Solms will challenge your most basic beliefs.
    Matthew Cobb, author of The Idea of the Brain: The Past and Future of Neuroscience
  • At last the emperor has found some clothes! For decades, consciousness has been perceived as an epiphenomenon, little more than an illusion that can’t really make things happen. Solms takes a thrilling new approach to the problem, grounded in modern neurobiology but finding meaning in older ideas going back to Freud. This is an exciting book.
    Nick Lane, author of The Vital Question
  • To say this work is encyclopaedic is to diminish its poetic, psychological and theoretical achievement. This is required reading.
    Susie Orbach, author of In Therapy
  • Intriguing…There is plenty to provoke and fascinate along the way.
    Anil Seth, Times Higher Education
  • Solms’s efforts… have been truly pioneering. This unification is clearly the direction for the future.
    Eric Kandel, Nobel laureate for Physiology and Medicine
  • This treatment of consciousness and artificial sentience should be taken very seriously.
    Karl Friston, scientific director, Wellcome Trust Centre for Neuroimaging
  • Solms’s vital work has never ignored the lived, felt experience of human beings. His ideas look a lot like the future to me.
    Siri Hustvedt, author of The Blazing World
  • Nobody bewitched by these mysteries [of consciousness] can afford to ignore the solution proposed by Mark Solms… Fascinating, wide-ranging and heartfelt.
    Oliver Burkeman, Guardian
  • This is truly a remarkable book. It changes everything.
    Brian Eno

At times, I had to concentrate hard while listening to this book, rewinding the playback multiple times. That’s because the ideas kept sparking new lines of thought in my mind, which ran off in different directions as the narration continued. And although Solms explains his ideas in an engaging manner, I wanted to think through the deeper connections with the various fields that form part of the discussion – including psychoanalysis (Freud features heavily), thermodynamics (Helmholtz, Gibbs, and Friston), evolution, animal instincts, dreams, Bayesian statistics, perceptual illusions, and the philosophy of science.

Alongside the theoretical sections, the book contains plenty of case studies – from Solms’ own patients, and from other clinicians over the decades (actually centuries) – that illuminate the points being made. These studies involve people – or animals – with damage to parts of their brains. The unusual ways in which these subjects behave – and the unusual ways in which they express themselves – provide insight on how consciousness operates. Particularly remarkable are the children born with hydranencephaly – that is, without a cerebral cortex – but who nevertheless appear to experience feelings.

Having spent two weeks making my way through the first three quarters of the book, I took the time yesterday (Sunday) to listen to the final quarter, where there were several climaxes following on top of each other – addressing at length the “Hard Problem” ideas of David Chalmers, and the possibility of artificial consciousness.

It’s challenging to summarise such a rich set of ideas in just a few paragraphs, but here are some components:

  • To understand consciousness, the subcortical brain stem (an ancient part of our anatomy) is at least as important as the cognitive architecture of the cortex
  • To understand consciousness, we need to pay attention to feelings as much as to memories and thought processing
  • Likewise, the chemistry of long-range neuromodulators is at least as important as the chemistry of short-range neurotransmitters
  • Consciousness arises from particular kinds of homeostatic systems which are separated from their environment by a partially permeable boundary: a structure known as a “Markov blanket”
  • These systems need to take actions to preserve their own existence, including creating an internal model of their external environment, monitoring differences between incoming sensory signals and what their model predicted these signals would be, and making adjustments so as to prevent these differences from escalating
  • Whereas a great deal of internal processing and decision-making can happen automatically, without conscious thought, some challenges transcend previous programming, and demand greater attention

In short, consciousness arises from particular forms of information processing. (Solms provides good reasons to reject the idea that there is a basic consiciousness latent in all information, or, indeed, in all matter.) Whilst more work requires to be done to pin down the exact circumstances in which consciousness arises, this project is looking much more promising now, than it did just a few years ago.

This is no idle metaphysics. The ideas can in principle be tested by creating artificial systems that involve particular kinds of Markov blankets, uncertain environments that pose existential threats to the system, diverse categorical needs (akin to the multiple different needs of biologically conscious organisms), and layered feedback loops. Solms sets out a three-stage process whereby such systems could be built and evolved, in a relatively short number of years.

But wait. All kinds of questions arise. Perhaps the most pressing one is this: If such systems can be built, should we build them?

That “should we” question gets a lot of attention in the closing sections of the book. We might end up with AIs that are conscious slaves, in ways that we don’t have to worry about for our existing AIs. We might create AIs that feel pain beyond that which any previous conscious being has ever experienced it. Equally, we might create AIs that behave very differently from those without consciousness – AIs that are more unpredictable, more adaptable, more resourceful, more creative – and more dangerous.

Solms is doubtful about any global moratorium on such experiments. Now that the ideas are out of the bag, so to speak, there will be many people – in both academia and industry – who are motivated to do additional research in this field.

What next? That’s a question that I’ll be exploring this Saturday, 6th March, when Mark Solms will be speaking to London Futurists. The title of his presentation will be “Towards an artificial consciousness”.

For more details of what I expect will be a fascinating conversation – and to register to take part in the live question and answer portion of the event – follow the links here.

31 July 2020

The future of AI: 12 possible breakthroughs, and beyond

Filed under: AGI, books, disruption — Tags: , , , , — David Wood @ 1:30 pm

The AI of 5-10 years time could be very different from today’s AI. The most successful AI systems of that time will not simply be extensions of today’s deep neural networks. Instead, they are likely to include significant conceptual breakthroughs or other game-changing innovations.

That was the argument I made in a presentation on Thursday to the Global Data Sciences and Artificial Intelligence meetup. The chair of that meetup, Pramod Kunji, kindly recorded the presentation.

You can see my opening remarks in this video:

A copy of my slides can be accessed on Slideshare.

The ideas in this presentation raise many important questions, for which there are, as yet, only incomplete answers.

Indeed, the future of AI is a massive topic, touching nearly every area of human life. The greater the possibility that AI will experience cascading improvements in capability, the greater the urgency of exploring these scenarios in advance. In other words, the greater the need to set aside hype and predetermined ideas, in order to assess matters objectively and with an independent mind.

For that reason, I’ve joined with Rohit Talwar of Fast Future and Ben Goertzel of SingularityNET in a project to commission and edit chapters in a forthcoming book, “The Future of AI: Pathways to Artificial General Intelligence”.

forward-2083419_1920

We’re asking AI researchers, practitioners, analysts, commentators, policy makers, investors, futurists, economists, and writers from around the world, to submit chapters of up to 1,000 words, by the deadline of 15th September, that address one or more of the following themes:

  • Capability, Applications, and Impacts
    • How might the capabilities of AI systems evolve in the years ahead?
    • What can we anticipate about the potential evolution from today’s AI to AGI and beyond, in which software systems will match or exceed human cognitive abilities in every domain of thought?
    • What possible scenarios for the emergence of significantly more powerful AI deserve the most attention?
    • What new economic concepts, business models, and intellectual property ownership frameworks might be enabled and required as a result of advances that help us transition from today’s AI to AGI?
  • Pathways to AGI
    • What incremental steps might help drive practical commercial and humanitarian AI applications in the direction of AGI?
    • What practical ideas and experiences can be derived from real-world applications of technologies like transfer learning, unsupervised and reinforcement learning, and lifelong learning?
    • What are the opportunities and potential for “narrow AGI” applications that bring increasing levels of AGI to bear within specific vertical markets and application areas?
  • Societal Readiness
    • How can we raise society-wide awareness and understanding of the underlying technologies and their capabilities?
    • How can governments, businesses, educators, civil society organizations, and individuals prepare for the range of possible impacts and implications?
    • What other actions might be taken by individuals, by local groups, by individual countries, by non-governmental organizations (NGOs), by businesses, and by international institutions, to help ensure positive outcomes with advanced AI? How might we reach agreement on what constitutes a positive societal outcome in the context of AI and AGI?
  • Governance
    • How might societal ethical frameworks need to evolve to cope with the new challenges and opportunities that AGI is likely to bring?
    • What preparations can be made, at the present time, for the introduction and updating of legal and political systems to govern the development and deployment of AGI?

For more details of this new book, the process by which chapters will be selected, and processing fees that may apply, click here.

I’m very much looking forward to the insights that will arise – and to the critical new questions that will no doubt arise along the way.

 

1 October 2019

“Lifespan” – a book to accelerate the emerging paradigm change in healthcare

Harvard Medical School professor David Sinclair has written a remarkable book that will do for an emerging new paradigm in healthcare what a similarly remarkable book by Oxford University professor Nick Bostrom has been doing for an emerging new paradigm in artificial intelligence.

In both cases, the books act to significantly increase the tempo of the adoption of the new paradigm.

Bostrom’s book, Superintelligence – subtitled Paths, Dangers, Strategies – caught the attention of Stephen Hawking, Bill Gates, Elon Musk, Barack Obama, and many more, who have collectively amplified its message. That message is the need to dramatically increase the priority of research into the safety of systems that contain AGI (artificial general intelligence). AGI will be a significant step up in capability from today’s “narrow” AI (which includes deep learning as well as “good old fashioned” expert systems), and therefore requires a significant step up in capability of safety engineering. In the wake of a wider appreciation of the scale of the threat (and, yes, the opportunity) ahead, funding has been provided for important initiatives such as the Future of Life Institute, OpenAI, and Partnership on AI. Thank goodness!

Sinclair’s book, Lifespan – subtitled Why We Age, and Why We Don’t Have To – is poised to be read, understood, and amplified by a similar group of key influencers of public thinking. In this case, the message is that a transformation is at hand in how we think about illness and health. Rather than a “disease first” approach, what is now possible – and much more desirable – is an “aging first” approach that views aging as the treatable root cause of numerous diseases. In the wake of a wider appreciation of the scale of the opportunity ahead (and, yes, the threat to society if healthcare continues along its current outdated disease-first trajectory), funding is likely to be provided to accelerate research into the aging-first paradigm. Thank goodness!

Bostom’s book drew upon the ideas of earlier writers, including Eliezer Yudkowsky and Ray Kurzweil. It also embodied decades of Bostrom’s own thinking and research into the field.

Sinclair’s book likewise builds upon ideas of earlier writers, including Aubrey de Grey and (again) Ray Kurzweil. Again, it also embodies decades of Sinclair’s own thinking and research into the field.

Both books are occasionally heavy going for the general reader – especially for a general reader who is in a hurry. But both take care to explain their thinking in a step-by-step process. Both contain many human elements in their narrative. Neither books contain the last word on their subject matter – and, indeed, parts will likely prove to be incorrect in the fullness of time. But both perform giant steps forwards for the paradigms they support.

The above remarks about the book Lifespan are part of what I’ll be talking about later today, in Brussels, at an open lunch event to mark the start of this year’s Longevity Month.

Longevity Month is an opportunity to celebrate recent progress, and to anticipate faster progress ahead, for the paradigm shift mentioned above:

  • Rather than studying each chronic disease separately, science should prioritise study of aging as the common underlying cause (and aggravator) of numerous chronic diseases
  • Rather than treating aging as an unalterable “fact of nature” (which, by the way, it isn’t), we should regard aging as an engineering problem which is awaiting an engineering solution.

In my remarks at this event, I’ll also be sharing my overall understanding of how paradigm shifts take place (and the opposition they face):

I’ll run through a simple explanation of the ideas behind the “aging-first” paradigm – a paradigm of regular medical interventions to repair or remove the damage caused at cellular and inter-cellular levels as a by-product of normal human metabolism:

Finally, I’ll be summarising the growing momentum of progress in a number of areas, and suggesting how that momentum has the potential to address the key remaining questions in the field:

In addition to me, four other speakers are scheduled to take part in today’s event:

It should be a great occasion!

24 June 2019

Superintelligence, Rationality, and the Race to Save the World

Filed under: AGI, books, irrationality, risks — Tags: , , , , , — David Wood @ 11:45 pm

What the world needs, urgently, is more rationality. It needs a greater number of people to be aware of the mistakes that are, too often, made due to flaws and biases in our thinking processes. It needs a community that can highlight the most important principles of rationality – a community that can help more and more people to learn, step-by-step, better methods of applied rationality. And, critically, the world needs a greater appreciation of a set of existential risks that threaten grave consequences for the future of humanity – risks that include misconfigured artificial superintelligence.

These statements express views held by a community known sometimes as “Less Wrong” (the name of the website on which many of the key ideas were developed), and sometimes, more simply, as “the rationalists”. That last term is frequently used in a new book by science writer Tom Chivers – a book that provides an accessible summary of the Less Wrong community. As well as being accessible, the summary is friendly, fair-minded, and (occasionally) critical.

The subtitle of Chivers’ book is straightforward enough: “Superintelligence, Rationality, and the Race to Save the World”. The race is between, on the one hand, the rapid development of technology with additional capabilities, and on the other hand, the development of suitable safety frameworks to ensure that this technology allows humanity to flourish rather than destroying us.

The title of the book takes a bit more explaining: “The AI Does Not Hate You”.

This phrase is a reference to a statement by one of the leading thinkers of the community in question, Eliezer Yudkowsky:

The AI does not hate you, nor does it love you, but you are made of atoms which it can use for something else.

In other words, the existential risk posed by artificial superintelligence isn’t that it will somehow acquire the human characteristic of hatred, but that it will end up following a trajectory which is misaligned with the best interests of humanity – a trajectory that sees humans as a kind of irrelevance.

To be clear, I share this worry. I’ve given my reasons many times on this personal blog, and I wrote up my own analysis at some length in chapter 9, “Towards abundant intelligence”, in my most recent book, “Sustainable superabundance”. My ideas have been shaped and improved by many things I’ve learned over the years from members of the Less Wrong community. Indeed, my presentations about the future of AI generally include several quotations from Yudkowsky.

However, these ideas often cause a kind of… embarrassment. Various writers on AI have poured scorn on them. Artificial superintelligence won’t arrive any time soon, they assert. Or if it does, it will be easy to keep under human control. Or if it transcends human control, there’s no reason to be alarmed, because its intelligence will automatically ensure that it behaves impeccably towards humans. And so on.

These critics often have a second string to their analysis. Not only do they argue for being relaxed about the idea of existential risks from superintelligence. They also argue that people who do worry about these risks – people like Yudkowsky, or Oxford University’s Nick Bostrom, or Stephen Hawking, or Elon Musk – are somehow personally defective. (“They’re egotistical”, runs one complaint. “There’s no need to pay any attention to these people”, the critics continue, “since they’re just philosophers, or mathematicians, or physicists, or business people, etc, rather than being a real AI expert”.)

At an extreme, this set of criticisms expresses itself in the idea that the Less Wrong community is a “cult“. A related objection is that a focus on humanity’s potential extinction is a distraction from much more pressing real-world issues of the present-day and near-term future – issues such as AI algorithms being biased, or AI algorithms stirring up dangerous social divisions, or increasing economic inequality, or disrupting employment, or making weapons more dangerous.

It’s in this context that the book by Chivers arrives. It tackles head-on the controversies around the Less Wrong community – controversies over its ideas, methods, aims, and the lifestyles and personalities of many of its leading figures. It does this carefully and (for the most part) engagingly.

As the book proceeds, Chivers gives voice to the various conflicting ideas he finds in himself regarding the core ideas of the Less Wrong community. My own judgement is that his assessments are fair. He makes it clear that, despite its “weird” angles, the community deserves more attention – much more attention – for its core ideas, and for the methods of rationality that it advocates.

It’s a cerebral book, but with considerable wit. And there are some touching stories in it (especially – spoiler alert – towards the end).

The book provides the very useful service of providing short introductions to many topics on which the Less Wrong community has written voluminously. On many occasions over the years, I’ve clicked into Less Wrong material, found it to be interesting, but also… long. Oh-so-long. And I got distracted long before I reached the punchline. In contrast, the book by Chivers is divided up into digestible short chunks, with a strong sense of momentum throughout.

As for the content of the book, probably about 50% was material that I already knew well, and which gave me no surprise. About 30% was material with which I was less familiar, and which filled in gaps in my previous understanding. That leaves perhaps 20% of the content which was pretty new to me.

I can’t say that the book has made me change my mind about any topic. However, it has made me want to find out more about the courses offered by CFAR (the Center For Applied Rationality), which features during various episodes Chivers recounts. And I’m already thinking of ways in which I’ll update my various slidesets, on account of the ideas covered in the book.

In summary, I would recommend this book to anyone who has heard about Less Wrong, Eliezer Yudkowsky, Nick Bostrom, or others in the extended rationalist community, and who is unsure what to think about the ideas they champion. This book will give you plenty of help in deciding how seriously you should take these ideas. You’ll find good reasons to counter the voices of those critics who seek (for whatever reasons) to belittle the Less Wrong community. And if you end up more worried than before about the existential risks posed by artificial superintelligence, that’s no bad thing!

PS1: For a 10 minute audio interview in which Tom Chivers talks about his book, visit this Monocle page.

PS2: If you want to see what the Less Wrong community members think about this book, visit this thread on the Less Wrong site.

29 September 2018

Preview: Assessing the risks from super intelligent AI

Filed under: AGI, presentation — Tags: , , , , , — David Wood @ 1:14 am

The following video gives a short preview of the Funzing talk on “Assessing the risks from super-intelligent AI” that I’ll be giving shortly:

Note: the music in this video is “Berlin Approval” from Jukedeck, a company that is “building tools that use cutting-edge musical artificial intelligence to assist creativity”. Create your own at http://jukedeck.com.

Transcript of the video:

Welcome. My name is David Wood, and I’d like to tell you about a talk I give for Funzing.

This talk looks at the potential rapid increase in the ability of Artificial Intelligence, also known as AI.

AI is everywhere nowadays, and it is, rightly, getting a lot of attention. But the AI of a few short years in the future could be MUCH more powerful than today’s AI. Is that going to be a good thing, or a bad thing?

Some people, like the entrepreneur Elon Musk, or the physicist Stephen Hawking, say we should be very worried about the growth of super artificial intelligence. It could be the worst thing that ever happened to humanity, they say. Without anyone intending it, we could all become the victims of some horrible bugs or design flaws in super artificial intelligence. You may have heard of the “blue screen of death”, when Windows crashes. Well, we could all be headed to some kind of “blue screen of megadeath”.

Other people, like the Facebook founder Mark Zuckerberg, say that it’s “irresponsible” to worry about the growth of super AI. Let’s hurry up and build better AI, they say, so we can use that super AI to solve major outstanding human problems like cancer, climate change, and economic inequality.

A third group of people say that discussing the rise of super AI is a distraction and it’s premature to do so now. It’s nothing we need to think about any time soon, they say. Instead, there are more pressing short-term issues that deserve our attention, like hidden biases in today’s AI algorithms, or the need to retrain people to change their jobs more quickly in the wake of the rise of automation.

In my talk, I’ll be helping you to understand the strengths and weaknesses of all three of these points of view. I’ll give reasons why, in as little as ten years, we could, perhaps, reach a super AI that goes way beyond human capability in every aspect. I’ll describe five ways in which that super AI could go disastrously wrong, due to lack of sufficient forethought and coordination about safety. And I’ll be reviewing some practical initiatives for how we can increase the chance of the growth of super AI being a very positive development for humanity, rather than a very negative one.

People who have seen my talk before have said that it’s easy to understand, it’s engaging, it’s fascinating, and it provides “much to think about”.

What makes my approach different to others who speak on this subject is the wide perspective I can apply. This comes from the twenty five years in which I was at the heart of the mobile computing and smartphone industries, during which time I saw at close hand the issues with developing and controlling very complicated system software. I also bring ten years of experience more recently, as chair of London Futurists, in running meetings at which the growth of AI has often been discussed by world-leading thinkers.

I consider myself a real-world futurist: I take the human and political dimensions of technology very seriously. I also consider myself to be a radical futurist, since I believe that the not-so-distant future could be very different from the present. And we need to think hard about it beforehand, to decide if we like that outcome or not.

The topic of super AI is too big and important to leave to technologists, or to business people. There are a lot of misunderstandings around, and my talk will help you see the key issues and opportunities more clearly than before. I look forward to seeing you there! Thanks for listening.

20 July 2018

Christopher Columbus and the surprising future of AI

Filed under: AGI, predictability, Singularity — Tags: , , , , — David Wood @ 5:49 pm

There are plenty of critics who are sceptical about the future of AI. The topic has been over-hyped, say these critics. According to these critics, we don’t need to be worried about the longer-term repercussions of AI with superhuman capabilities. We’re many decades – perhaps centuries – from anything approaching AGI (artificial general intelligence) with skills in common sense reasoning matching (or surpassing) that of humans. As for AI destroying jobs, that, too, is a false alarm – or so the critics insist. AI will create at least as many jobs as it destroys.

In my previous blog post, Serious question over PwC’s report on the impact of AI on jobs, I offered some counters to these critics. To my mind, this is no time for complacency: AI could accelerate in its capabilities, and take us by surprise. The kinds of breakthroughs that, in a previous era, might have been expected to take many decades, could actually take place in just a few short years. Rather than burying our head in the sands, denying the possibility of any such acceleration, we need to pay more attention to the trends of technological change and the potential for disruptive new innovations.

The Christopher Columbus angle

Overnight, I’ve been reminded of an argument that I’ve used previously – towards the end of a rather long blogpost. It’s the argument that critics of the future of AI are similar to the critics of Christopher Columbus – the people who said, before his 1492 voyage across the Atlantic in search of a westerly route to Asia, that the effort was bound to be a bad investment.

Bear with me while I retell this analogy.

For years, Columbus tried to drum up support for what most people considered to be a hare-brained scheme. Most observers concluded that Columbus had fallen victim to a significant mistake – he estimated that the distance from the Canary Islands (off the coast of Morocco) to Japan was around 3,700 km, whereas the generally accepted figure was closer to 20,000 km. Indeed, the true size of the sphere of the Earth had been known since the 3rd century BC, due to a calculation by Eratosthenes, based on observations of shadows at different locations.

Accordingly, when Columbus presented his bold proposal to courts around Europe, the learned members of the courts time and again rejected the idea. The effort would be hugely larger than Columbus supposed, they said. It would be a fruitless endeavour.

Columbus, an autodidact, wasn’t completely crazy. He had done a lot of his own research. However, he was misled by a number of factors:

  • Confusion between various ancient units of distance (the “Arabic mile” and the “Roman mile”)
  • How many degrees of latitude the Eurasian landmass occupied (225 degrees versus 150 degrees)
  • A speculative 1474 map, by the Florentine astronomer Toscanelli, which showed a mythical island “Antilla” located to the east of Japan (named as “Cippangu” in the map).

You can read the details in the Wikipedia article on Columbus, which provides numerous additional reference points. The article also contains a copy of Toscanelli’s map, with the true location of the continents of North and South America superimposed for reference.

No wonder Columbus thought his plan might work after all. Nevertheless, the 1490s equivalents of today’s VCs kept saying “No” to his pitches. Finally, spurred on by competition with the neighbouring Portuguese (who had, just a few years previously, successfully navigated to the Indian ocean around the tip of Africa), the Spanish king and queen agreed to take the risk of supporting his adventure. After stopping in the Canaries to restock, the Nina, the Pinta, and the Santa Maria set off westward. Five weeks later, the crew spotted land, in what we now call the Bahamas. And the rest is history.

But it wasn’t the history expected by Columbus, or by his backers, or by his critics. No-one had foreseen that a huge continent existed in the oceans in between Europe and Japan. None of the ancient writers – either secular or religious – had spoken of such a continent. Nevertheless, once Columbus had found it, the history of the world proceeded in a very different direction – including mass deaths from infectious diseases transmitted from the European sailors, genocide and cultural apocalypse, and enormous trade in both goods and slaves. In due course, it would the the ingenuity and initiatives of people subsequently resident in the Americas that propelled humans beyond the Earth’s atmosphere all the way to the moon.

What does this have to do with the future of AI?

Rational critics may have ample justification in thinking that true AGI is located many decades in the future. But this fact does not deter a multitude of modern-day AGI explorers from setting out, Columbus-like, in search of some dramatic breakthroughs. And who knows what intermediate forms of AI might be discovered, unexpectedly?

Just as the contemporaries of Columbus erred in presuming they already knew all the large features of the earth’s continents (after all: if America really existed, surely God would have written about it in the Bible…), modern-day critics of AI can err in presuming they already know all the large features of the landscape of possible artificial minds.

When contemplating the space of all possible minds, some humility is in order. We cannot foretell in advance what configurations of intelligence are possible. We don’t know what may happen, if separate modules of reasoning are combined in innovative ways. After all, there are many aspects of the human mind which are still in doubt.

When critics say that it is unlikely that present-day AI mechanisms will take us all the way to AGI, they are very likely correct. But it would be a horrendous error to draw the conclusion that meaningful new continents of AI capability are inevitably still the equivalent of 20,000 km into the distance. The fact is, we simply don’t know. And for that reason, we should keep an open mind.

One day soon, indeed, we might read news of some new “AUI” having been discovered – some Artificial Unexpected Intelligence, which changes history. It won’t be AGI, but it could have all kinds of unexpected consequences.

Beyond the Columbus analogy

Every analogy has its drawbacks. Here are three ways in which the discovery of an AUI could be different from the discovery by Columbus of America:

  1. In the 1490s, there was only one Christopher Columbus. Nowadays, there are scores (perhaps hundreds) of schemes underway to try to devise new models of AI. Many of these are proceeding with significant financial backing.
  2. Whereas the journey across the Atlantic (and, eventually, the Pacific) could be measured by a single variable (latitude), the journey across the vast multidimensional landscape of artificial minds is much less predictable. That’s another reason to keep an open mind.
  3. Discovering an AUI could drastically transform the future of exploration in the landscape of artificial minds. Assisted by AUI, we might get to AGI much quicker than without it. Indeed, in some scenarios, it might take only a few months after we reach AUI for us (now going much faster than before) to reach AGI. Or days. Or hours.

Footnote

If you’re in or near Birmingham on 11th September, I’ll be giving a Funzing talk on how to assess the nature of the risks and opportunities from superhuman AI. For more details, see here.

 

7 December 2017

The super-opportunities and super-risks of super-AI

Filed under: AGI, Events, risks, Uncategorized — Tags: , , — David Wood @ 7:29 pm

2017 has seen more discussion of AI than any preceding year.

There has even been a number of meetings – 15, to be precise – in the UK Houses of Parliament, of the APPG AI – an “All-Party Parliamentary Group on Artificial Intelligence”.

According to its website, the APPG AI “was set up in January 2017 with the aim to explore the impact and implications of Artificial Intelligence”.

In the intervening 11 months, the group has held 7 evidence meetings, 4 advisory group meetings, 2 dinners, and 2 receptions. 45 different MPs, along with 7 members of the House of Lords and 5 parliamentary researchers, have been engaged in APPG AI discussions at various times.

APPG-AI

Yesterday evening, at a reception in Parliament’s Cholmondeley Room & Terrace, the APPG AI issued a 12 page report with recommendations in six different policy areas:

  1. Data
  2. Infrastructure
  3. Skills
  4. Innovation & entrepreneurship
  5. Trade
  6. Accountability

The headline “key recommendation” is as follows:

The APPG AI recommends the appointment of a Minister for AI in the Cabinet Office

The Minister would have a number of different responsibilities:

  1. To bring forward the roadmap which will turn AI from a Grand Challenge to a tool for untapping UK’s economic and social potential across the country.
  2. To lead the steering and coordination of: a new Government Office for AI, a new industry-led AI Council, a new Centre for Data Ethics and Innovation, a new GovTech Catalyst, a new Future Sectors Team, and a new Tech Nation (an expansion of Tech City UK).
  3. To oversee and champion the implementation and deployment of AI across government and the UK.
  4. To keep public faith high in these emerging technologies.
  5. To ensure UK’s global competitiveness as a leader in developing AI technologies and capitalising on their benefits.

Overall I welcome this report. It’s a definite step in the right direction. Via a programme of further evidence meetings and workshops planned throughout 2018, I expect real progress can be made.

Nevertheless, it’s my strong belief that most of the public discussion on AI – including the discussions at the APPG AI – fail to appreciate the magnitude of the potential changes that lie ahead. There’s insufficient awareness of:

  • The scale of the opportunities that AI is likely to bring – opportunities that might better be called “super-opportunities”
  • The scale of the risks that AI is likely to bring – “super-risks”
  • The speed at which it is possible (though by no means guaranteed) that AI could transform itself via AGI (Artificial General Intelligence) to ASI (Artificial Super Intelligence).

These are topics that I cover in some of my own presentations and workshops. The events organisation Funzing have asked me to run a number of seminars with the title “Assessing the risks from superintelligent AI: Elon Musk vs. Mark Zuckerberg…”

DW Dec Funzing Singularity v2

The reference to Elon Musk and Mark Zuckerberg reflects the fact that these two titans of the IT industry have spoken publicly about the advent of superintelligence, taking opposing views on the balance of opportunity vs. risk.

In my seminar, I take the time to explain their differing points of view. Other thinkers on the subject of AI that I cover include Alan Turing, IJ Good, Ray Kurzweil, Andrew Ng, Eliezer Yudkowsky, Stuart Russell, Nick Bostrom, Isaac Asimov, and Jaan Tallinn. The talk is structured into six sections:

  1. Introducing the contrasting ideas of Elon Musk and Mark Zuckerberg
  2. A deeper dive into the concepts of “superintelligence” and “singularity”
  3. From today’s AI to superintelligence
  4. Five ways that powerful AI could go wrong
  5. Another look at accelerating timescales
  6. Possible responses and next steps

At the time of writing, I’ve delivered this Funzing seminar twice. Here’s a sampling of the online reviews:

Really enjoyed the talk, David is a good presenter and the presentation was very well documented and entertaining.

Brilliant eye opening talk which I feel very effectively conveyed the gravity of these important issues. Felt completely engaged throughout and would highly recommend. David was an excellent speaker.

Very informative and versatile content. Also easy to follow if you didn’t know much about AI yet, and still very insightful. Excellent Q&A. And the PowerPoint presentation was of great quality and attention was spent on detail putting together visuals and explanations. I’d be interested in seeing this speaker do more of these and have the opportunity to go even more in depth on specific aspects of AI (e.g., specific impact on economy, health care, wellbeing, job market etc). 5 stars 🙂

Best Funzing talk I have been to so far. The lecture was very insightful. I was constantly tuned in.

Brilliant weighing up of the dangers and opportunities of AI – I’m buzzing.

If you’d like to attend one of these seminars, three more dates are in my Funzing diary:

Click on the links for more details, and to book a ticket while they are still available 🙂

30 November 2017

Technological Resurrection: An idea ripe for discussion

Like it or not, humans are becoming as gods. Where will this trend lead?

How about the ability to bring back to life people who died centuries ago, and whose bodies have long since disintegrated?

That’s the concept of “Technological Resurrection” which is covered in the recent book of the same name by Dallas, Texas based researcher Jonathan A. Jones.

The book carries the subtitle “A thought experiment”. It’s a book that can, indeed, lead readers to experiment with new kinds of thoughts. If you are ready to leave your normal comfort zone behind, you may find a flurry of unexpected ideas emerging in your mind as you dip into its pages. You’re likely also to encounter considerable emotional turmoil en route.

The context

Here’s the context. Technology is putting within human reach more and more of the capabilities that were thought, in former times, to be the preserve of divine beings:

  • We’re not omniscient, but Google has taken us a long way in that direction
  • We’re not yet able to create life at will, but our skills with genomic engineering are proceeding apace
  • Evolution need no longer proceed blindly, via Darwinian Russian roulette, but can benefit from conscious intelligent design (by humans, for humans)
  • Our ability to remake nature is being extended by our ability to remake human nature.
  • We can enable the blind to see, the deaf to hear, and the lame to walk
  • Thanks to medical breakthroughs, we can even bring the dead back to life – that is, the cessation of heart and breath need no longer herald an early grave.

But that’s just the start. It’s plausible that, sooner or later, humanity will create artificial superintelligence with powers that are orders of magnitude greater than anything we currently possess. These enhanced powers would bring humanity even closer to the domain of the gods of bygone legends. These powers might even enable technological resurrection.

Some details

In more detail: Profound new engineering capabilities might become available that can bridge remote sections of space and time – perhaps utilising the entanglement features of quantum physics, perhaps creating and exploiting relativistic “wormholes”, or perhaps involving unimagined novel scientific principles. These bridges might allow selected “copying” of consciousness from just before the moment of death, into refined bodies constructed in the far future ready to receive such consciousness. As Jonathan Jones explores, this copying might take place in ways that circumvent the time travel paradoxes that often feature in science fiction.

That’s a lot of “mights” and “maybes”. However, when contemplating the range of ideas for what might happen to consciousness after physical death, it would be wise to include this option. Beyond our deathbed, we might awaken to find ourselves in a state akin to paradise – surrounded by resurrected family and friends. Born 1945, died 2020, resurrected 2085? Born 1895, died 1917, resurrected 2087?

The book contains a number of speculative short stories to whet readers’ appetites to continue this exploration. These stories add colour to what is already a colourful, imaginative book. The artistic license is grounded in a number of solid references to science, philosophy, psychology, and history. For example, there’s a particularly good section on Russian “cosmist” thinkers. There’s a review of how films and novels have dealt with similar ideas over the decades. And the book is brought up to date with a discussion of contemporary transhumanists, including Ray Kurzweil, Ben Goertzel, Jose Cordeiro, and Giulio Prisco.

Futurists like to ask three questions about forthcoming scenarios. Are they credible (as opposed to being mere flights of fantasy). Are they actionable, in that individual human actions could alter their probability of occurring. And are they desirable.

All three questions get an airing in the pages of the book Jonathan Jones has written. To keep matters short, for now I’ll focus on the third question.

The third question

The idea of technological resurrection could provide much-needed solace, for people whose lives otherwise seem wretched. Perhaps death will cease to be viewed as a one-way ticket to eternal oblivion. What’s more, the world might benefit mightily from a new common quest to advance human capability, safely, beyond the existential perils of modern social angst, towards being able to make technological resurrection a reality. That’s a shared purpose which would help humanity transcend our present-day pettiness. It’s a route to make humanity truly great.

However, from other points of view, the idea of technological resurrection could be viewed as an unhelpful distraction. Similar to how religion was criticised by Karl Marx as being “the opium of the people” – an illusory “pie in the sky when you die” – the vague prospect of technological resurrection could dissuade people from taking important steps to secure or improve long-term health prospects. It might prevent them from:

  • Investigating and arranging cryonics support standby services
  • Channelling funds and resources to those researchers who may be on the point of abolishing aging
  • Encouraging the adoption of health-promoting lifestyles, economic policies, and beneficial diets and supplements
  • Accelerating the roll-out of technoprogressive measures that will raise people around the world out of relative poverty and into relative prosperity.

Finally, the idea of technological resurrection may also fill some minds with dread and foreboding – if they realise that devious, horrible actions from their past, which they believed were secret, might become more widely known by a future superintelligence. If that superintelligence has the inclination to inflict a punitive (hellish) resurrection, well, things gain a different complexion.

There’s a great deal more that deserves to be said about technological resurrection. I’m already thinking of organising some public meetings on this topic. In the meantime, I urge readers to explore the book Jonathan Jones has written. That book serves up its big ideas in ways that are playful, entertaining, and provocative. But the ideas conveyed by the light-hearted text may live in your mind long after you have closed the book.

PS I’ve addressed some of these questions from a different perspective in Chapter 12, “Radical alternatives”, of my own 2016 book “The Abolition of Aging”.

Older Posts »

Blog at WordPress.com.