dw2

10 October 2015

Technological unemployment – Why it’s different this time

On Tuesday last week I joined members of “The Big Potatoes” for a spirited discussion entitled “Automation Anxiety”. Participants became embroiled in questions such as:

  • To what extent will increasingly capable automation (robots, software, and AI) displace humans from the workforce?
  • To what extent should humans be anxious about this process?

The Big Potatoes website chose an image from the marvellously provocative Channel 4 drama series “Humans” to set the scene for the discussion:

Channel4_HumansAdvertisingHoarding-440x293

“Closer to humans” than ever before, the fictional advertisement says, referring to humanoid robots with multiple capabilities. In the TV series, many humans became deeply distressed at the way their roles are being usurped by these new-fangled entities.

Back in the real world, many critics reject these worries. “We’ve heard it all before”, they assert. Every new wave of technological automation has caused employment disruption, yes, but it has also led to new types of employment. The new jobs created will compensate for the old ones destroyed, the critics say.

I see these critics as, most likely, profoundly mistaken. This time things are different. That’s because of the general purpose nature of ongoing improvements in the algorithms for automation. Machine learning algorithms that are developed with one set of skills in mind turn out to fit, reasonably straightforwardly, into other sets of skills as well.

The master algorithm

That argument is spelt out in the recent book “The master algorithm” by University of Washington professor of computer science and engineering Pedro Domingos.

TheMasterAlgorithm

The subtitle of that book refers to a “quest for the ultimate learning machine”. This ultimate learning machine can be contrasted with another universal machine, namely the universal Turing machine:

  • The universal Turing machine accepts inputs and applies a given algorithm to compute corresponding outputs
  • The universal learning machine accepts a set of corresponding input and output data, and makes the best possible task of inferring the algorithm that would obtain the outputs from the inputs.

For example, given sets of texts written in English, and matching texts written in French, the universal learning machine would infer an algorithm that will convert English into French. Given sets of biochemical reactions of various drugs on different cancers, the universal learning machine would infer an algorithm to suggest the best treatment for any given cancer.

As Domingos explains, there are currently five different “tribes” within the overall machine learning community. Each tribe has its separate origin, and also its own idea for the starting point of the (future) master algorithm:

  • “Symbolists” have their origin in logic and philosophy; their core algorithm is “inverse deduction”
  • “Connectionists” have their origin in neuroscience; their core algorithm is “back-propagation”
  • “Evolutionaries” have their origin in evolutionary biology; their core algorithm is “genetic programming”
  • “Bayesians” have their origin in statistics; their core algorithm is “probabilistic inference”
  • “Analogizers” have their origin in psychology; their core algorithm is “kernel machines”.

(See slide 6 of this Slideshare presentation. Indeed, take the time to view the full presentation. Better again, read Domingos’ entire book.)

What’s likely to happen over the next decade, or two, is that a single master algorithm will emerge that unifies all the above approaches – and, thereby, delivers great power. It will be similar to the progress made by physics as the fundamental force of natures have gradually been unified into a single theory.

And as that unification progresses, more and more occupations will be transformed, more quickly than people generally expect. Technological unemployment will rise and rise, as software embodying the master algorithm handles tasks previously thought outside the scope of automation.

Incidentally, Domingos has set out some ambitious goals for what his book will accomplish:

The goal is to do for data science what “Chaos” [by James Gleick] did for complexity theory, or “The Selfish Gene” [by Richard Dawkins] for evolutionary game theory: introduce the essential ideas to a broader audience, in an entertaining and accessible way, and outline the field’s rich history, connections to other fields, and implications.

Now that everyone is using machine learning and big data, and they’re in the media every day, I think there’s a crying need for a book like this. Data science is too important to be left just to us experts! Everyone – citizens, consumers, managers, policymakers – should have a basic understanding of what goes on inside the magic black box that turns data into predictions.

People who comment about the likely impact of automation on employment would do particularly well to educate themselves about the ideas covered by Domingos.

Rise of the robots

There’s a second reason why “this time it’s different” as regards the impact of new waves of automation on the employment market. This factor is the accelerating pace of technological change. As more areas of industry become subject to digitisation, they become, at the same time, subject to automation.

That’s one of the arguments made by perhaps the best writer so far on technological unemployment, Martin Ford. Ford’s recent book “Rise of the Robots: Technology and the Threat of a Jobless Future” builds ably on what previous writers have said.

RiseofRobots

Here’s a sample of review comments about Ford’s book:

Lucid, comprehensive and unafraid to grapple fairly with those who dispute Ford’s basic thesis, Rise of the Robots is an indispensable contribution to a long-running argument.
Los Angeles Times

If The Second Machine Age was last year’s tech-economy title of choice, this book may be 2015’s equivalent.
Financial Times, Summer books 2015, Business, Andrew Hill

[Ford’s] a careful and thoughtful writer who relies on ample evidence, clear reasoning, and lucid economic analysis. In other words, it’s entirely possible that he’s right.
Daily Beast

Surveying all the fields now being affected by automation, Ford makes a compelling case that this is an historic disruption—a fundamental shift from most tasks being performed by humans to one where most tasks are done by machines.
Fast Company

Well-researched and disturbingly persuasive.
Financial Times

Martin Ford has thrust himself into the center of the debate over AI, big data, and the future of the economy with a shrewd look at the forces shaping our lives and work. As an entrepreneur pioneering many of the trends he uncovers, he speaks with special credibility, insight, and verve. Business people, policy makers, and professionals of all sorts should read this book right away—before the ‘bots steal their jobs. Ford gives us a roadmap to the future.
—Kenneth Cukier, Data Editor for the Economist and co-author of Big Data: A Revolution That Will Transform How We Live, Work, and Think

Ever since the Luddites, pessimists have believed that technology would destroy jobs. So far they have been wrong. Martin Ford shows with great clarity why today’s automated technology will be much more destructive of jobs than previous technological innovation. This is a book that everyone concerned with the future of work must read.
—Lord Robert Skidelsky, Emeritus Professor of Political Economy at the University of Warwick, co-author of How Much Is Enough?: Money and the Good Life and author of the three-volume biography of John Maynard Keynes

If you’re still not convinced, I recommend that you listen to this audio podcast of a recent event at London’s RSA, addressed by Ford.

I summarise the takeaway message in this picture, taken from one of my Delta Wisdom workshop presentations:

Tech unemployment curves

  • Yes, humans can retrain over time, to learn new skills, in readiness for new occupations when their former employment has been displaced by automation
  • However, the speed of improvement of the capabilities of automation will increasingly exceed that of humans
  • Coupled with the general purpose nature of these capabilities, it means that, conceivably, from some time around 2040, very few humans will be able to find paid work.

A worked example: a site carpenter

During the Big Potatoes debate on Tuesday, I pressed the participants to name an occupation that would definitely be safe from incursion by robots and automation. What jobs, if any, will robots never be able to do?

One suggestion that came back was “site carpenter”. In this thinking, unfinished buildings are too complex, and too difficult for robots to navigate. Robots who try to make their way through these buildings, to tackle carpentry tasks, will likely fall down. Or assuming they don’t fall down, how will they cope with finding out that the reality in the building often varies sharply from the official specification? These poor robots will try to perform some carpentry task, but will get stymied when items are in different places from where they’re supposed to be. Or have different tolerances. Or alternatives have been used. Etc. Such systems are too messy for robots to compute.

My answer is as follows. Yes, present-day robots currently often do fall down. Critics seem to find this hilarious. But this is pretty similar to the fact that young children often fall down, while learning to walk. Or novice skateboarders often fall down, when unfamiliar with this mode of transport. However, robots will learn fast. One example is shown in this video, of the “Atlas” humanoid robot from Boston Dynamics (now part of Google):

As for robots being able to deal with uncertainty and surprises, I’m frankly struck by the naivety of this question. Of course software can deal with uncertainty. Software calculates courses of action statistically and probabilistically, the whole time. When software encounters information at variance from what it previously expected, it can adjust its planned course of action. Indeed, it can take the same kinds of steps that a human would consider – forming new hypotheses, and, when needed, checking back with management for confirmation.

The question is a reminder to me that the software and AI community need to do a much better job to communicate the current capabilities of their field, and the likely improvements ahead.

What does it mean to be human?

For me, the most interesting part of Tuesday’s discussion was when it turned to the following questions:

  • Should these changes be welcomed, rather than feared?
  • What will these forthcoming changes imply for our conception of what it means to be human?

To my mind, technological unemployment will force us to rethink some of the fundamentals of the “protestant work ethic” that permeates society. That ethic has played a decisive positive role for the last few centuries, but that doesn’t mean we should remain under its spell indefinitely.

If we can change our conceptions, and if we can manage the resulting social transition, the outcome could be extremely positive.

Some of these topics were aired at a conference in New York City on 29th September: “The World Summit on Technological Unemployment”, that was run by Jim Clark’s World Technology Network.

Robotic Steel Workers

One of the many speakers at that conference, Scott Santens, has kindly made his slides available, here. Alongside many graphs on the increasing “winner takes all” nature of modern employment (in which productivity increases but median income declines), Santens offers a different way of thinking about how humans should be spending their time:

We are not facing a future without work. We are facing a future without jobs.

There is a huge difference between the two, and we must start seeing the difference, and making the difference more clear to each other.

In his blogpost “Jobs, Work, and Universal Basic Income”, Santens continues the argument as follows:

When you hate what you do as a job, you are definitely getting paid in return for doing it. But when you love what you do as a job or as unpaid work, you’re only able to do it because of somehow earning sufficient income to enable you to do it.

Put another way, extrinsically motivated work is work done before or after an expected payment. It’s an exchange. Intrinsically motivated work is work only made possible by sufficient access to money. It’s a gift.

The difference between these two forms of work cannot be overstated…

Traditionally speaking, most of the work going on around us is only considered work, if one gets paid to do it. Are you a parent? Sorry, that’s not work. Are you in paid childcare? Congratulations, that’s work. Are you an open source programmer? Sorry, that’s not work. Are you a paid software engineer? Congratulations, that’s work…

What enables this transformation would be some variant of a “basic income guarantee” – a concept that is introduced in the slides by Santens, and also in the above-mentioned book by Martin Ford. You can hear Ford discuss this option in his RSA podcast, where he ably handles a large number of questions from the audience.

What I found particularly interesting from that podcast was a comment made by Anthony Painter, the RSA’s Director of Policy and Strategy who chaired the event:

The RSA will be advocating support for Basic Income… in response to Technological Unemployment.

(This comment comes about 2/3 of the way through the podcast.)

To be clear, I recognise that there will be many difficulties in any transition from the present economic situation to one in which a universal basic income applies. That transition is going to be highly challenging to manage. But these problems of transition are a far better problem to have, than dealing with the consequences of vastly increased unpaid unemployment and social alienation.

Life is being redefined

Just in case you’re still tempted to dismiss the above scenarios as some kind of irresponsible fantasy, there’s one more resource you might like to consult. It’s by Janna Q. Anderson, Professor of Communications at Elon University, and is an extended write-up of a presentation I heard her deliver at the World Future 2015 conference in San Francisco this July.

Janna Anderson keynote

You can find Anderson’s article here. It starts as follows:

The Robot Takeover is Already Here

The machines that replace us do not have to have superintelligence to execute a takeover with overwhelming impacts. They must merely extend as they have been, rapidly becoming more and more instrumental in our essential systems.

It’s the Algorithm Age. In the next few years humans in most positions in the world of work will be nearly 100 percent replaced by or partnered with smart software and robots —’black box’ invisible algorithm-driven tools. It is that which we cannot see that we should question, challenge and even fear the most. Algorithms are driving the world. We are information. Everything is code. We are becoming dependent upon and even merging with our machines. Advancing the rights of the individual in this vast, complex network is difficult and crucial.

The article is described as being a “45 minute read”. In turn, it contains numerous links, so you could spend lots longer following the resulting ideas. In view of the momentous consequences of the trends being discussed, that could prove to be a good use of your time.

By way of summary, I’ll pull out a few sentences from the middle of the article:

One thing is certain: Employment, as it is currently defined, is already extremely unstable and today many of the people who live a life of abundance are not making nearly enough of an effort yet to fully share what they could with those who do not…

It’s not just education that is in need of an overhaul. A primary concern in this future is the reinvention of humans’ own perceptions of human value…

[Another] thing is certain: Life is being redefined.

Who controls the robots?

Despite the occasional certainty in this field (as just listed above, extracted from the article by Janna Anderson), there remains a great deal of uncertainty. I share with my Big Potatoes colleagues the viewpoint that technology does not determine social responses. The question of which future scenario will unfold isn’t just a question of cheer-leading (if you’re an optimist) or cowering (if you’re a pessimist). It’s a question of choice and action.

That’s a theme I’ll be addressing next Sunday, 18th October, at a lunchtime session of the 2015 Battle of Ideas. The session is entitled “Man vs machine: Who controls the robots”.

robots

Here’s how the session is described:

From Metropolis through to recent hit film Ex Machina, concerns about intelligent robots enslaving humanity are a sci-fi staple. Yet recent headlines suggest the reality is catching up with the cultural imagination. The World Economic Forum in Davos earlier this year hosted a serious debate around the Campaign to Stop Killer Robots, organised by the NGO Human Rights Watch to oppose the rise of drones and other examples of lethal autonomous warfare. Moreover, those expressing the most vocal concerns around the march of the robots can hardly be dismissed as Luddites: the Elon-Musk funded and MIT-backed Future of Life Institute sparked significant debate on artificial intelligence (AI) by publishing an open letter signed by many of the world’s leading technologists and calling for robust guidelines on AI research to ‘avoid potential pitfalls’. Stephen Hawking, one of the signatories, has even warned that advancing robotics could ‘spell the end of the human race’.

On the other hand, few technophiles doubt the enormous potential benefits of intelligent robotics: from robot nurses capable of tending to the elderly and sick through to the labour-saving benefits of smart machines performing complex and repetitive tasks. Indeed, radical ‘transhumanists’ openly welcome the possibility of technological singularity, where AI will become so advanced that it can far exceed the limitations of human intelligence and imagination. Yet, despite regular (and invariably overstated) claims that a computer has managed to pass the Turing Test, many remain sceptical about the prospect of a significant power shift between man and machine in the near future…

Why has this aspect of robotic development seemingly caught the imagination of even experts in the field, when even the most remarkable developments still remain relatively modest? Are these concerns about the rise of the robots simply a high-tech twist on Frankenstein’s monster, or do recent breakthroughs in artificial intelligence pose new ethical questions? Is the question more about from who builds robots and why, rather than what they can actually do? Does the debate reflect the sheer ambition of technologists in creating smart machines or a deeper philosophical crisis in what it means to be human?

 As you can imagine, I’ll be taking serious issue with the above claim, from the session description, that progress with robots will “remain relatively modest”. However, I’ll be arguing for strong focus on questions of control.

It’s not just a question of whether it’s humans or robots that end up in control of the planet. There’s a critical preliminary question as to which groupings and systems of humans end up controlling the evolution of robots, software, and automation. Should we leave this control to market mechanisms, aided by investment from the military? Or should we exert a more general human control of this process?

In line with my recent essay “Four political futures: which will you choose?”, I’ll be arguing for a technoprogressive approach to control, rather than a technolibertarian one.

Four futures

I wait with interest to find out how much this viewpoint will be shared by the other speakers at this session:

Advertisements

29 August 2014

Can technology bring us peace?

SevereThe summer months of 2014 have brought us a sickening surfeit of awful news. Our newsfeeds have been full of conflict, casualties, and brutalities in Iraq, Syria, Ukraine, Gaza, and so on. For example, just a couple of days ago, my browser screamed at me, Let’s be clear about this: Russia is invading Ukraine right now. And my TV has just informed me that the UK’s terror threat level is being raised from “substantial” to “severe”:

The announcement comes amid increasing concern about hundreds of UK nationals who are believed by security services to have travelled to fight in Iraq and Syria.

These real-world conflicts have been giving rise to online mirror conflicts among many of the people that I tend to respect. These online controversies play out heated disputes about the rights and wrongs of various participants in the real-world battles. Arguments ding-dong ferociously: What is the real reason that MH17 plane was shot down? How disproportionate is the response by Israel to provocations from Hamas? How much is Islamic belief to blame for the barbarism of the self-proclaimed Islamic State? Or is the US to blame, on account of its ill-advised meddling in far-off lands? And how fair is it to compare Putin to Hitler?

But at a recent informal pub gathering of London Futurists, one of the long-time participants in these meetups, Andrius Kasparavicius, asked a hard question. Shouldn’t those of us who believe in the transformational potential of new technology – those of us who dare to call ourselves technoprogressives, transhumanists, or social futurists – have a better answer to these conflict flashpoints? Rather than falling back into twentieth century diatribes against familiar bête noir villains, isn’t it worth striving to find a 21st century viewpoint that transcends such rivalries? We talk a lot about innovation: can’t we be innovative about solving these global flashpoints?

A similar thought gnawed at me a few weeks later, during a family visit to Inverness. A local production of West Side Story was playing at the Eden Court theatre. Bernstein’s music was exhilarating. Sondheim’s lyrics were witty and provocative. The cast shimmied and slunk around the stage. From our vantage point in the second row of seats, we could see all the emotions flit across the faces of the performers. The sudden tragic ending hit hard. And I thought to myself: These two gangs, the Jets and the Sharks, were locked into a foolish, needless struggle. They lacked an adult, future perspective. Isn’t it the same with the tragic conflicts that occupy our newsfeeds? These conflicts have their own Jets and Sharks, and, yes, a lack of an adult, future perspective. Can’t they see the better future which is within our collective grasp, if only they can cast aside their tribal perspectives?

That thought was soon trumped by another: the analogy is unfair. Some battles are worth fighting. For example, if we take no action against Islamic State, we shouldn’t be surprised if there’s an ever worse spate of summary beheadings, forced conversions, women being driven into servitude roles in societies all over the middle east, and terrorist strikes throughout the wider world.

But still… isn’t it worth considering possible technological, technoprogressive, or transhumanist approaches to peace?

  • After all, we say that technology changes everything. History is the story of the continual invention and enhancement of tools, machines, and devices of numerous sorts, which transform human experience in all fields of life.
  • Indeed, human progress has taken place by the discovery and mastery of engineering solutions – such as fire, the wheel, irrigation, sailing ships, writing, printing, the steam engine, electricity, domestic kitchen appliances, railways and automobiles, computers and the Internet, plastics, vaccinations, anaesthetic, contraception, and better hygiene.
  • What’s more, the rate of technological change is increasing, as larger numbers of engineers, scientists, designers, and entrepreneurs from around the globe participate in a rich online network exchange of ideas and information. Forthcoming technological improvements can propel human experience onto an even higher plane – with our minds and bodies both being dramatically enhanced.
  • So shouldn’t the further development of technology give us more options to achieve lasting resolution of global flashpoints?

Event previewTherefore I have arranged an online hangout discussion meeting: Global flashpoints: what do transhumanists have to say? This will be taking place at 7pm UK time this Sunday, 31st August. The corresponding YouTube video page (for people who prefer not to log into Google+ in order to view the Hangout that way) is here. I’ll be joined in this discussion by a number of thinkers from different transhumanist perspectives, based around Europe.

I’ve put a plaintive note on the meeting invite:

In our discussion, we’ll try to transcend the barbs and scape-goating that fills so much of existing online discussion about Iraq/Syria/Ukraine/Gaza/etc.

I honestly don’t know how the discussion is going to unfold. But here are some possible lines of argument:

  1. Consider the flashpoint in Ferguson, Missouri, after the shooting dead of teenager Michael Brown. That particular conflict arose, in part, because of disputes over what actually happened at the time of the shooting. But if the police in Ferguson had all been wearing and operating personal surveillance cameras,  then perhaps a lot of the heat would have gone out of the issue. That would be one example of taking advantage of recent improvements in technology in order to defuse a potential conflict hotspot
  2. Much conflict is driven by people feeling a sense of profound alienation from mainstream culture. Disaffected youths from all over Europe are leaving their families behind to travel to support fundamentalist Islamic causes in the middle east. They need a much better vision of the future, to reduce the chance that they will fall prey to these particular mind viruses. Could social futurism, technoprogressivism, and transhumanism offer that alternative vision?
  3. Rather than technology helping to create peace, there’s a major risk it will help to worsen conflicts. Powerful arsenals in the hands of malcontents are likely to have a more horrific impact nowadays – and an even worse one in the near future – than corresponding weaponry had in the past. Think also of the propaganda value of Islamic State execution videos distributed via YouTube – that kind of effect was unthinkable just a decade ago.

Existential ThreatOf these three lines of discussion, I am most persuaded by the third one. The implications are as follows. The message that we social futurists and transhumanists should be highlighting, in response to these outrages is, sadly, “You ain’t seen nothing yet”. There are actually existential risks that will deserve very serious collective action, in order to solve. In that case, it’s even more imperative that the global community gets its act together, and finds a more effective way to resolve the conflicts in our midst.

At the same time, we do need to emphasise the positive vision of where the world could reach in, say, just a few decades: a world with enormous abundance, fuelled by new technologies (nanotech, solar energy, rejuvenation biotech, ubiquitous smart robots) – a world that will transcend the aspirations of all existing ideologies. If we can make the path to this future more credible, there’s good reason to hope that people all over the world will set aside their previous war-like tendencies, tribal loyalties, and dark age mythologies.

 

2 April 2014

Anticipating London in 2025

The following short essay about the possible future of London was prompted by some questions posed to me by Nicolas Bérubé, a journalist based in Montreal.

PredictionsFuturists seek, not to give cast-iron predictions about what is most likely to happen in the future, but, instead, to highlight potential scenarios that deserve fuller study – threats and opportunities that need addressing in advance, before the threats become too severe, or the opportunities slip outside our grasp.

Given this framework, which trends are the most significant for the future of London, by, say, 2025?

London has a great deal going for it: an entrepreneurial spirit, a cosmopolitan mix of people of all ages, fine universities (both in the city and nearby), a strong financial hub, the “mother of parliaments”, a fascinating history, and rich traditions in entertainment, the arts, the sciences, and commerce. London’s successful hosting of the 2012 Olympics shows what the city can accomplish. It’s no surprise that London is ranked as one of only two “Alpha++ cities” in the world.

Other things being equal, the ongoing trend of major cities becoming even more dominant is going to benefit London. There are many economies of scale with large cities that have good infrastructure. Success attracts success.

Second Machine AgeHowever, there are potential counter-trends. One is the risk of greater inequality and societal alienation. Even as mean income continues to rise, median income falls. Work that previously required skilled humans will increasingly become capable of being done by smart automatons – robots, AIs, or other algorithms. The “technological unemployment” predicted by John Maynard Keynes as long ago as the 1930s is finally becoming a significant factor. The book “The second machine age” by MIT professors Brynjolfsson and McAfee, gives us reasons to think this trend will intensify. So whilst a smaller proportion of London citizens may become increasingly wealthy, the majority of its inhabitants may become poorer. That in turn could threaten the social cohesion, well before 2025, making London a much less pleasant place to live.

One reaction to the perception of loss of work opportunity is to blame outsiders, especially immigrants. The present populist trend against free movement of people from the EU into the UK, typified by the rise of UKIP, could accelerate, and then backfire, as young Europeans decamp en masse to more open, welcoming cities.

A similar trend towards social unpleasantness could happen if, as seems likely, there is further turmoil in the financial markets. The “great crash of 2008” may come to be seen as a small tremor, compared to the potential cataclysmic devastation that lies ahead, with the failures of trading systems that are poorly understood, overly complex, overly connected, poorly regulated, and subject to many perverse incentives. Many people whose livelihoods depends, directly or indirectly, on the financial city of London, could find themselves thrown into jeopardy. One way London can hedge against this risk is to ensure that alternative commercial sectors are thriving. What’s needed is wise investment in next generation technology areas, such as stem cells, nanotechnology, green energy, artificial intelligence, synthetic biology, neuro enhancement, and driverless cars. Another response is to urgently improve our collective understanding and oversight of the pervasive interconnections in our monetary systems.

The fact that, with modern medical treatments, people are living longer and longer, increases the pressures on social welfare systems. Ailments that previously would (sadly) have killed sufferers fairly quickly, can now linger on for years and even decades, in chronic sickness. This demographic change poses all sorts of challenge, including the need to plan much longer periods of time when people will be dependent on their pension plans. One important counter-measure is accelerated development of rejuvenation biotechnology, that gives people new leases of life (and renewed potential for productive employment) before they are afflicted with the diseases of middle-age and old-age.

Cities depend in major ways on their transport infrastructure. By 2025, there will be huge strides in the capabilities of driverless cars. This could usher in an era of transport that is much safer, less expensive, and greener (in part because cars that don’t crash can be built with much lighter materials). Cities that are quick to adopt this new technological infrastructure, and who do it well, could quickly gain in comparative popularity. It’s encouraging that Oxford, near to London, is conducting state-of-the-art research and development of low-cost driverless cars. And alongside driverless surface vehicles, there’s far-reaching potential for positive adoption of a vast network of autonomous flying drones (sometimes dubbed the “Matternet” by analogy with the “Internet”). But unless London acts smartly, these opportunities could pass it by.

Three other trends are harder to predict, but are worth bearing in mind.

  1. First, the wider distribution of complex technology – aided by the Internet and by the rise of 3D printing, among other things – potentially puts much more destructive capability in the hands of angry young men (and angry middle-aged men). People who feel themselves dispossessed and alienated might react in ways that far outscale previous terrorist outrages (even the horrors of 9-11). Some of these potential next-generation mega-terrorists are home-grown in London, but others come from troublespots around the world where they have imbibed fantasy fundamentalist ideologies. Some of these people might imagine it as their holy destiny, in some perverted thinking, to cause huge damage to “the great Satan” of London. Their actions – as well as the intense reactions of the authorities to prevent future misdeeds – could drastically change the culture of London.
  2. Second, fuller use of telecommuting, virtual presence, and remote video conferencing, coupled with advanced augmented reality, could lessen people’s needs to be living close together. The millennia-long trend towards greater centralisation and greater cosmopolitanism may reverse, quicker than we imagine. This fits with the emerging trend towards localism, self-sufficiency, and autonomous structures. London’s population could therefore shrink, abetted by faster broadband connectivity, and the growth of 3D printing for improved local manufacturing.
  3. Finally, the floods and storms experienced in the south of England over the last few months might be a harbinger of worse to come. No one can be sure how the increases in global temperature are restructuring atmospheric and ocean heat distribution patterns. London’s long dependence on the mighty river Thames might prove, in a new world of unpredictable nastier weather, to be a curse rather than a blessing. It’s another reason, in addition to those listed earlier, for investment in next-generation technology, so we can re-establish good relations between man and nature (and between city and environs).

What’s the most important aspect missing from this vision?

17 September 2013

When faith gets in the way of progress

Is it good that we grow old, weak, disease-prone, and eventually succumb, dead, to the ravages of aging?

The rise and fall of our health and vigour is depicted in this sketch from leading biogerontology researcher Alex Zhavoronkov:

Aging Decline

This diagram is taken from the presentation Alex made at a London Futurists event on 31st August. Alex used the same slide in his presentation, several days later, to the SENS6 conference “Reimage aging” at Queens’ College, Cambridge.

conf-page-banner

My impression from the attendees at SENS6 that I met, over the four days I spent at the conference, is that the vast majority of them would give a resounding ‘No’ as the answer to the question,

Is it good that we grow old, weak, disease-prone, and eventually succumb, dead, to the ravages of aging?

What’s more, they shared a commitment that action should be taken to change this state of affairs. In various ways, they described themselves as “fighters against aging”, “healthy longevity activists”, and as “campaigners for negligible senescence”. They share an interest in the declaration made on the page on the SENS Research Foundation website describing the conference:

The purpose of the SENS conference series, like all the SENS initiatives, is to expedite the development of truly effective therapies to postpone and treat human aging by tackling it as an engineering problem: not seeking elusive and probably illusory magic bullets, but instead enumerating the accumulating molecular and cellular changes that eventually kill us and identifying ways to repair – to reverse – those changes, rather than merely to slow down their further accumulation.

This broadly defined regenerative medicine – which includes the repair of living cells and extracellular material in situ – applied to damage of aging, is what we refer to as rejuvenation biotechnologies.

This “interventionist” approach, if successful, would lead to a line, on the chart of performance against age, similar to that shown in the bright green colour: we would retain our youthful vigour indefinitely. Mechanisms supporting this outcome were explored in considerable technical details in the SENS6 presentations. The SENS6 audience collectively posed some probing questions to the individual presenters, but the overall direction was agreed. Rejuvenation biotechnologies ought to be developed, as soon as possible.

But not everyone sees things like this. SENS6 attendees agreed on that point too. Over informal discussions throughout the event, people time and again shared anecdotes about their personal acquaintances being opposed to the goals of SENS. You can easily see the same kind of negative reactions, in the online comments pages of newspapers, whenever a newspaper reports some promising news about potential techniques to overcome aging.

For example, the Daily Mail in the UK recently published a well-researched article, “Do lobsters hold the key to eternal life? Forget gastronomic indulgence, the crustacean can defy the aging process”. The article starts as follows:

They are usually associated with a life of gastronomic indulgence and heart-stopping excess. But away from the dinner table, lobsters may actually hold the secret to a long, healthy — and possibly even eternal — life.

For this crustacean is one of a handful of bizarre animals that appear to defy the normal aging process.

While the passing years bring arthritis, muscle loss, memory problems and illness to humans, lobsters seem to be immune to the ravages of time. They can be injured, of course. They can pick up diseases. They can be caught and thrown into a pot, then smothered in béchamel sauce.

But rather than getting weaker and more vulnerable over the years, they become stronger and more fertile each time they shed their shells.

The typical lobster weighs 1 to 2 lb. But in 2009, a Maine fisherman landed a colossus of 20 lb, which was estimated to be 140 years old. And that isn’t even the oldest lobster found so far. According to Guinness World Records, a 44 lb leviathan was caught in 1977, with claws powerful enough to snap a man’s arm.

The species belongs to an elite group that appears to be ‘biologically immortal’. Away from predators, injury or disease, these astonishing creatures’ cells don’t deteriorate with age…

For healthy longevity activists, there was lots of good news in the article. This information, however, was too much for some readers to contemplate. Some of the online comments make for fascinating (but depressing) reading. Here are four examples, quoted directly from the comments:

  1. How would humankind cope with tens of millions of extremely old and incredibly crabby people?
  2. People have to die and they’re not dying quickly enough. Soon the earth will run out of water and food for the ever increasing masses.
  3. These “researchers” should watch Death Becomes Her
  4. The only guarantee of eternal life is to read your Bibles. Though even if you don’t, eternal life of another kind exists, though it’s not particularly appealing: “And the smoke of their torment ascendeth up for ever and ever” (Rev 14:11).

To be clear, the goal of project such as those in the SENS umbrella is to extend healthy lifespans (sometimes known as “healthspans”) rather than simply extending lifespans themselves. Rejuvenation technologies are envisioned to undo tendencies towards unwelcome decrepitude, crabbiness, and so on.

As for the reference to the 1992 Hollywood film “Death Becomes Her” featuring Meryl Streep and Goldie Hawn in a frightful “living dead” immortality, I’ll get back to that later.

Infinite ResourceThe question of potential over-population has a bit more substance. However, the worry isn’t so much the number of people on the earth, but the rate at which everyone is consuming and polluting. With potential forthcoming improvements in harnessing solar energy, we’ll have more than enough energy available to look after a planet with 10 billion people. Arguably the planet could sustain at least 100 billion people. (That argument is made, in a well-balanced way, by Ramez Naam in his recent book “The infinite resource” – a book I thoroughly recommend. I’ve also covered this question from time to time in earlier blogposts – see e.g. “Achieving a 130-fold improvement in 40 years”.)

However, I believe that there are deeper roots to the opposition that many people have to the idea of extending healthy lifespans. They may offer intellectual rationalisations for their opposition (e.g. “How would humankind cope with tens of millions of extremely old and incredibly crabby people?”) but these rationalisations are not the drivers for the position they hold.

Instead, their opposition to extending healthy lifespans comes from what we can call faith.

This thought crystallised in my mind as I reflected on the very last presentation from SENS6. The speaker was Thomas Pyszczynski of the University of Colorado, and his topic was “Understanding the paradox of opposition to long-term extension of the human lifespan: fear of death, cultural worldviews, and the illusion of objectivity”.

The presentation title was long, but the content was clear and vivid. The speaker outlined some conclusions from decades of research he had conducted into “Terror Management Theory (TMT)”. I’ve since discovered that the subject of “Terror Management Theory” has its own article in Wikipedia:

Terror management theory (TMT), in social psychology, proposes a basic psychological conflict that results from having a desire to live but realizing that death is inevitable. This conflict produces terror, and is believed to be unique to humans. Moreover, the solution to the conflict is also generally unique to humans: culture. According to TMT, cultures are symbolic systems that act to provide life with meaning and value. If life is thought meaningful, death is less terrifying. Cultural values therefore serve to manage the terror of death by providing life with meaning…

pyszczynski

Here’s the “paradox” to which Pyszczynski (pictured) referred: people oppose the idea that we could have longer healthy lives, because of the operation of a set of culture and philosophical ideas, which were themselves an adaptive response to the underlying fact that we deeply desire indefinitely long healthy lives. So the opposition is self-contradictory, but the people involved don’t see it like that.

For all of history up until the present age, the idea of having an indefinitely long healthy life was at stark variance to everything else that we saw around ourselves. Death seemed inevitable. In order to avoid collapsing into terror, we needed to develop rationalisations and techniques that prevented us from thinking seriously about our own finitude and mortality. That’s where key aspects of our culture arose. These aspects of our culture became deeply rooted.

Our culture operates, in many cases, below the level of conscious awareness. We find ourselves being driven by various underlying beliefs, without being aware of the set of causes and effects. However, we find comfort in these beliefs. This faith (belief in the absence of sufficient reason) helps to keep us mentally sane, and keeps society functional, even as it prepares us, as individuals, to grow infirm and die.

In case any new ideas challenge this faith, we find ourselves compelled to lash out against these ideas, even without taking the time to analyse them. Our motivation, here, is to preserve our core culture and faith, since that’s what provides the foundation of meaning in our lives. We fight the new ideas, even if these new ideas would be a better solution to our underlying desire to live an indefinitely long, healthy life. The new ideas leave us with a feeling of alienation, even though we don’t see the actual connections between ideas. Our faith causes us to lose our rationality.

Incidentally, similar factors apply, of course, when other things that have profound importance to us are challenged. For example, when we think we may lose a cherished romantic partner, we can all too easily become crazy. When your heart’s on fire, smoke gets in your eyes.

Ending AgingIt turns out that Aubrey de Grey, the chief science officer of SENS, has already written on this same topic. In chapter two of his 2007 book “Ending aging”, he notes the following:

There is a very simple reason why so many people defend aging so strongly – a reason that is now invalid, but until quite recently was entirely reasonable. Until recently, no one has had any coherent idea how to defeat aging, so it has been effectively inevitable. And when one is faced with a fate that is as ghastly as aging and about which one can do absolutely nothing, either for oneself or even for others, it makes perfect psychological sense to put it out of one’s mind – to make one’s peace with it, you might say – rather than to spend one’s miserably short life preoccupied by it. The fact that, in order to sustain this state of mind, one has to abandon all semblance of rationality on the subject – and, inevitably, to engage in embarrassingly unreasonable conversational tactics to shore up that irrationality – is a small price to pay….

Aubrey continues this theme at the start of chapter three:

We’ve recently reached the point where we can engage in the rational design of therapies to defeat aging: most of the rest of this book is an account of my favoured approach to that design. But in order to ensure that you can read that account with an open mind, I need to dispose beforehand of a particularly insidious aspect of the pro-aging trance: the fact that most people already know, in their heart of hearts, that there is a possibility that aging will eventually be defeated.

Why is this a problem? Indeed, at first sight you might think that it would make my job easier, since surely it means that the pro-aging trance is not particularly deep. Unfortunately, however, self-sustained delusions don’t work like that. Just as it’s rational to be irrational about the desirability of aging in order to make your peace with it, it’s also rational to be irrational about the feasibility of defeating aging while the chance of defeating it any time soon remains low. If you think there’s even a 1 percent chance of defeating aging within your lifetime (or within the lifetime of someone you love), that sliver of hope will prey on your mind and keep your pro-aging trance uncomfortably fragile, however hard you’ve worked to convince yourself that aging is actually not such a bad thing after all. If you’re completely convinced that aging is immutable, by contrast, you can sleep more soundly.

Underwood_Mair_2013_smallAnother speaker from the final session of SENS6, Mair Underwood of the University of Queensland, provided some timely advice to the SENS6 community, that dovetails well with the discussion above. Underwood’s presentation was entitled “What reassurances do the community need regarding life extension? Evidence from studies of community attitudes and an analysis of film portrayals”. The presentation pointed out the many ways in which popular films (such as “Death Becomes Her”, mentioned above) portray would-be life extensionists in a bad light. These people, the films imply, are emotionally immature, selfish, frustrated, obstructive, and generally unattractive. This is the pro-death culture at work.

To counteract these impressions, and to help free the broader community from its faith that aging and death are actually good things, Underwood gave the following advice:

  1. Assure that life extension science, and the distribution of life extension technologies, are ethical and regulated, and seen to be so
  2. Assuage community concerns about life extension as unnatural or playing god
  3. Assure that life extension would involve an extension of healthy lifespan
  4. Assure that life extension does not mean a loss of fertility
  5. Assure the community that life extension will not exacerbate social divides, and that those with extended lives will not be a burden on society
  6. Create a new cultural framework for understanding life extension.

This advice is all good, but I suspect that the new few years may see a growing “battle of faiths”, as representatives of the old culture fight harder in opposition to the emerging evidence that we we are on the point of possessing the technological means to extend human healthspans very significantly. This is a battle that may need more tools, to influence the outcome, than mere hard-honed rationality. At the very least, we’ll need to keep in mind how culture works, and the ways in which faith draws strength.

Follow ups: Several forthcoming London Futurists meetups address topics that are directly relevant to the above line of thinking:

  • Futurism, Spirituality, and Faith, in Birkbeck College on Saturday 21st September, discusses ways in which committed technoprogressives can best interact with faith-based movements, without these interactions leading to fruitless irrationality and loss of direction
  • Projects to accelerate radical healthy longevity, a Google Hangout On Air (HOA) on Sunday 29th September, features a panel discussion on the question, “What are the most important ongoing projects to accelerate radical healthy longevity?”
  • Futurists discuss The Transhumanist Wager, with Zoltan Istvan, another Google HOA, on Sunday 20th September, reviews a recently published novel about a possible near-future scenario of a growing battle between the old human culture and an emerging new culture that favours indefinitely long healthspans.
  • Finally, if you’re interested in the question of whether solar energy will be able, as I implied above, to address pending shortages in global energy supplies, even as human population continues to increase, you should make it a priority to attend the London Futurists event on Saturday 5th October, The Energy of Nations, with Jeremy Leggett. The speaker on this occasion is one of the world’s foremost authorities on solar energy, oil depletion, climate change, and dysfunctional investment. The topic of the best energy systems for the decades ahead is, alas, another one in which faith tends to subvert reason, and in which we need to be smart to prevent our thinking being hijacked by adverse factors.

For more information about the evolution of London Futurists, you can take a peek at a new website which is in the process of being implemented, at http://londonfuturists.com/.

22 February 2013

Controversies over singularitarian utopianism

I shouldn’t have been surprised at the controversy that arose.

The cause was an hour-long lecture with 55 slides, ranging far and wide over a range of disruptive near-future scenarios, covering both upside and downside. The basic format of the lecture was: first the good news, and then the bad news. As stated on the opening slide,

Some illustrations of the enormous potential first, then some examples of how adding a high level of ambient stupidity might mean we might make a mess of it.

Ian PearsonThe speaker was Ian Pearson, described on his company website as “futurologist, conference speaker, regular media guest, strategist and writer”. The website continues, boldly,

Anyone can predict stuff, but only a few get it right…

Ian Pearson has been a full time futurologist since 1991, with a proven track record of over 85% accuracy at the 10 year horizon.

Ian was speaking, on my invitation, at the London Futurists last Saturday. His chosen topic was audacious in scope:

A Singularitarian Utopia Or A New Dark Age?

We’re all familiar with the idea of the singularity, the end-result of rapid acceleration of technology development caused by positive feedback. This will add greatly to human capability, not just via gadgets but also through direct body and mind enhancement, and we’ll mess a lot with other organisms and AIs too. So we’ll have superhumans and super AIs as part of our society.

But this new technology won’t bring a utopia. We all know that some powerful people, governments, companies and terrorists will also add lots of bad things to the mix. The same technology that lets you enhance your senses or expand your mind also allows greatly increased surveillance and control, eventually to the extremes of direct indoctrination and zombification. Taking the forces that already exist, of tribalism, political correctness, secrecy for them and exposure for us, and so on, it’s clear that the far future will be a weird mixture of fantastic capability, spoiled by abuse…

There were around 200 people in the audience, listening as Ian progressed through a series of increasingly mind-stretching technology opportunities. Judging by the comments posted online afterwards, some of the audience deeply appreciated what they heard:

Thank you for a terrific two hours, I have gone away full of ideas; I found the talk extremely interesting indeed…

I really enjoyed this provocative presentation…

Provocative and stimulating…

Very interesting. Thank you for organizing it!…

Amazing and fascinating!…

But not everyone was satisfied. Here’s an extract from one negative comment:

After the first half (a trippy sub-SciFi brainstorm session) my only question was, “What Are You On?”…

Another audience member wrote his own blogpost about the meeting:

A Singularitanian Utopia or a wasted afternoon?

…it was a warmed-over mish-mash of technological cornucopianism, seasoned with Daily Mail-style reactionary harrumphing about ‘political correctness gone mad’.

These are just the starters of negative feedback; I’ll get to others shortly. As I review what was said in the meeting, and look at the spirited ongoing exchange of comments online, some thoughts come to my mind:

  • Big ideas almost inevitably provoke big reactions; this talk had a lot of particularly big ideas
  • In some cases, the negative reactions to the talk arise from misunderstandings, due in part to so much material being covered in the presentation
  • In other cases, Isee the criticisms as reactions to the seeming over-confidence of the speaker (“…a proven track record of over 85% accuracy”)
  • In yet other cases, I share the negative reactions the talk generated; my own view of the near-future landscape significantly differs from the one presented on stage
  • In nearly all cases, it’s worth taking the time to progress the discussion further
  • After all, if we get our forecasts of the future wrong, and fail to make adequate preparations for the disruptions ahead, it could make a huge difference to our collective well-being.

So let’s look again at some of the adverse reactions. My aim is to raise them in a way that people who didn’t attend the talk should be able to follow the analysis.

(1) Is imminent transformation of much of human life a realistic scenario? Or are these ideas just science fiction?

NBIC SingularityThe main driver for belief in the possible imminent transformation of human life, enabled by rapidly changing technology, is the observation of progress towards “NBIC” convergence.

Significant improvements are taking place, almost daily, in our capabilities to understand and control atoms (Nano-tech), genes and other areas of life-sciences (Bio-tech), bits (Info-comms-tech), and neurons and other areas of mind (Cogno-tech). Importantly, improvements in these different fields are interacting with each other.

As Ian Pearson described the interactions:

  • Nanotech gives us tiny devices
  • Tiny sensors help neuroscience figure out how the mind works
  • Insights from neuroscience feed into machine intelligence
  • Improving machine intelligence accelerates R&D in every field
  • Biotech and IT advances make body and machine connectable

Will all the individual possible applications of NBIC convergence described by Ian happen in precisely the way he illustrated? Very probably not. The future’s not as predictable as that. But something similar could well happen:

  • Cheaper forms of energy
  • Tissue-cultured meat
  • Space exploration
  • Further miniaturisation of personal computing (wearable computing, and even “active skin”)
  • Smart glasses
  • Augmented reality displays
  • Gel computing
  • IQ and sensory enhancement
  • Dream linking
  • Human-machine convergence
  • Digital immortality: “the under 40s might live forever… but which body would you choose?”

(2) Is a focus on smart cosmetic technology an indulgent distraction from pressing environmental issues?

Here’s one of the comments raised online after the talk:

Unfortunately any respect due was undermined by his contempt for the massive environmental challenges we face.

Trivial contact lens / jewellery technology can hang itself, if our countryside is choked by yoghurt factory fumes.

The reference to jewellery took issue with remarks in the talk such as the following:

Miniaturisation will bring everyday IT down to jewellery size…

Decoration; Social status; Digital bubble; Tribal signalling…

In contrast, the talk positioned greater use of technology as the solution to environmental issues, rather than as something to exacerbate these issues. Smaller (jewellery-sized) devices, created with a greater attention to recyclability, will diminish the environmental footprint. Ian claimed that:

  • We can produce more of everything than people need
  • Improved global land management could feed up to 20 billion people
  • Clean water will be plentiful
  • We will also need less and waste less
  • Long term pollution will decline.

Nevertheless, he acknowledged that there are some short-term problems, ahead of the time when accelerating NBIC convergence can be expected to provide more comprehensive solutions:

  • Energy shortage is a short to mid term problem
  • Real problems are short term.

Where there’s room for real debate is the extent of these shorter-term problems. Discussion on the threats from global warming brought these disagreements into sharp focus.

(3) How should singularitarians regard the threat from global warming?

BalanceTowards the end of his talk, Ian showed a pair of scales, weighing up the wins and losses of NBIC technologies and a potential singularity.

The “wins” column included health, growth, wealth, fun, and empowerment.

The “losses” column included control, surveillance, oppression, directionless, and terrorism.

One of the first questions from the floor, during the Q&A period in the meeting, asked why the risk of environmental destruction was not on the list of possible future scenarios. This criticism was echoed by online comments:

The complacency about CO2 going into the atmosphere was scary…

If we risk heading towards an environmental abyss let’s do something about what we do know – fossil fuel burning.

During his talk, I picked up on one of Ian’s comments about not being particularly concerned about the risks of global warming. I asked, what about the risks of adverse positive feedback cycles, such as increasing temperatures triggering the release of vast ancient stores of methane gas from frozen tundra, accelerating the warming cycle further? That could lead to temperature increases that are much more rapid than presently contemplated, along with lots of savage disturbance (storms, droughts, etc).

Ian countered that it was a possibility, but he had the following reservations:

  • He thought these positive feedback loops would only kick into action when baseline temperature rose by around 2 degrees
  • In the meantime, global average temperatures have stopped rising, over the last eleven years
  • He estimates he spends a couple of hours every day, keeping an eye on all sides of the global warming debate
  • There are lots of exaggerations and poor science on both sides of the debate
  • Other factors such as the influence of solar cycles deserve more research.

Here’s my own reaction to these claims:

  • The view that global average temperatures  have stopped rising, is, among serious scientists, very much a minority position; see e.g. this rebuttal on Carbon Brief
  • Even if there’s only a small probability of a runaway spurt of accelerated global warming in the next 10-15 years, we need to treat that risk very seriously – in the same way that, for example, we would be loath to take a transatlantic flight if we were told there was a 5% chance of the airplane disintegrating mid-flight.

Nevertheless, I did not want the entire meeting to divert into a debate about global warming – “that deserves a full meeting in its own right”, I commented, before moving on to the next question. In retrospect, perhaps that was a mistake, since it may have caused some members of the audience to mentally disengage from the meeting.

(4) Are there distinct right-wing and left-wing approaches to the singularity?

Here’s another comment that was raised online after the talk:

I found the second half of the talk to be very disappointing and very right-wing.

And another:

Someone who lists ‘race equality’ as part of the trend towards ignorance has shown very clearly what wing he is on…

In the second half of his talk, Ian outlined changes in norms of beliefs and values. He talked about the growth of “religion substitutes” via a “random walk of values”:

  • Religious texts used to act as a fixed reference for ethical values
  • Secular society has no fixed reference point so values oscillate quickly.
  • 20 years can yield 180 degree shift
  • e.g. euthanasia, sexuality, abortion, animal rights, genetic modification, nuclear energy, family, policing, teaching, authority…
  • Pressure to conform reinforces relativism at the expense of intellectual rigour

A complicating factor here, Ian stated, was that

People have a strong need to feel they are ‘good’. Some of today’s ideological subscriptions are essentially secular substitutes for religion, and demand same suspension of free thinking and logical reasoning.

Knowledge GraphA few slides later, he listed examples of “the rise of nonsense beliefs”:

e.g. new age, alternative medicine, alternative science, 21st century piety, political correctness

He also commented that “99% are only well-informed on trivia”, such as fashion, celebrity, TV culture, sport, games, and chat virtual environments.

This analysis culminated with a slide that personally strongly resonated with me: a curve of “anti-knowledge” accelerating and overtaking a curve of “knowledge”:

In pursuit of social compliance, we are told to believe things that are known to be false.

With clever enough spin, people accept them and become worse than ignorant.

So there’s a kind of race between “knowledge” and “anti-knowledge”.

One reason this resonated with me is that it seemed like a different angle on one of my own favourite metaphors for the challenges of the next 15-30 years – the metaphor of a dramatic race:
Race

  • One runner in the race is “increasing rationality, innovation, and collaboration”; if this runner wins, the race ends in a positive singularity
  • The other runner in the race is “increasing complexity, rapidly diminishing resources”; if this runner wins, the race ends in a negative singularity.

In the light of Ian’s analysis, I can see that the second runner is aided by the increase of anti-knowledge: over-attachment to magical, simplistic, ultimately misleading worldviews.

However, it’s one thing to agree that “anti-knowledge” is a significant factor in determining the future; it’s another thing to agree which sets of ideas count as knowledge, and which as anti-knowledge! One of Ian’s slides included the following list of “religion substitutes”:

Animal rights, political correctness, pacifism, vegetarianism, fitness, warmism, environmentalism, anti-capitalism

It’s no wonder that many of the audience felt offended. Why list “warmism” (a belief in human-caused global warming), but not “denialism” (denial of human-caused global warming? Why list “anti-capitalism” but not “free market fundamentalism”? Why list “pacifism” but not “militarism”?

One online comment made a shrewd observation:

Ian raised my curiosity about ‘false beliefs’ (or nonsense beliefs as Ian calls them) as I ‘believe’ we all inhabit different belief systems – so what is true for one person may be false for another… at that exact moment in time.

And things can change. Once upon a time, it was a nonsense belief that the world was round.

There may be 15% of truth in some nonsense beliefs…or possibly even 85% truth. Taking ‘alternative medicine’ as an example of one of Ian’s nonsense beliefs – what if two of the many reasons it was considered nonsense were that (1) it is outside the world (the system) of science and technology and (2) it cannot be controlled by the pharmaceutical companies (perhaps our high priests of today)?

(5) The role of corporations and politicians in the approach to the singularity

One place where the right-wing / left-wing division becomes more acute in the question of whether anything special needs to be done to control the behaviour of corporations (businesses).

One of Ian’s strong positive recommendations, at the end of his presentation, was that scientists and engineers should become more actively involved in educating the general public about issues of technology. Shortly afterward, the question came from the floor: what about actions to educate or control corporations? Ian replied that he had very little to recommend to corporations, over and above his recommendations to the individuals within these corporations.

My own view is different. From my life inside industry, I’ve seen numerous cases of good people who are significantly constrained in their actions by the company systems and metrics in which they find themselves enmeshed.

Indeed, just as people should be alarmed about the prospects of super-AIs gaining too much power, over and above the humans who created them, we should also be alarmed about the powers that super-corporations are accumulating, over and above the powers and intentions of their employees.

The argument to leave corporations alone finds its roots in ideologies of freedom: government regulation of corporations often has undesirable side-effects. Nevertheless, that’s just an argument for being smarter and more effective in how the regulation works – not an argument to abstain from regulation altogether.

The question of the appropriate forms of collaborative governance remains one of the really hard issues facing anyone concerned about the future. Leaving corporations to find their own best solutions is, in my view, very unlikely to be the optimum approach.

In terms of how “laissez-faire” we should be, in the face of potential apocalypse down the road, I agree with the assessment near the end of Jeremy Green’s blogpost:

Pearson’s closing assertion that in the end our politicians will always wake up and pull us back from the brink of any disaster is belied by many examples of civilisations that did not pull back and went right over the edge to destruction.

Endnote:

After the presentation in Birkbeck College ended, around 40-50 of the audience regrouped in a nearby pub, to continue the discussion. The discussion is also continuing, at a different tempo, in the online pages of the London Futurists meetup. Ian Pearson deserves hearty congratulation for stirring up what has turned out to be an enlightening discussion – even though there’s heat in the comments as well as light!

Evidently, the discussion is far from complete…

16 June 2012

Beyond future shock

Filed under: alienation, books, change, chaos, futurist, Humanity Plus, rejuveneering, robots, Singularity, UKH+ — David Wood @ 3:10 pm

They predicted the “electronic frontier” of the Internet, Prozac, YouTube, cloning, home-schooling, the self-induced paralysis of too many choices, instant celebrities, and the end of blue-collar manufacturing. Not bad for 1970.

That’s the summary, with the benefit of four decades of hindsight, given by Fast Company writer Greg Lindsay, of the forecasts made in the 1970 bestseller “Future Shock” by husband-and-wife authors Alvin and Heidi Toffler.

As Lindsay comments,

Published in 1970, Future Shock made its author Alvin Toffler – a former student radical, welder, newspaper report and Fortune editor – a household name. Written with his wife (and uncredited co-author), Heidi Toffler, the book was The World Is Flat of its day, selling 6 million copies and single-handedly inventing futurism…

“Future shock is the shattering stress and disorientation that we induce in individuals by subjecting them to too much change in too short a time”, the pair wrote.

And quoting Deborah Westphal, the managing partner of Toffler Associates, in an interview at an event marking the 40th anniversary of the publication of Future Shock, Lindsay notes the following:

In Future Shock, the Tofflers hammered home the point that technology, culture, and even life itself was evolving too fast for governments, policy-makers and regulators to keep up. Forty years on, that message hasn’t changed. “The government needs to understand the dependencies and the convergence of networks through information,” says Westphal. “And there still needs to be some studies done around rates of change and the synchronization of these systems. Business, government, and organizational structures need to be looked at and redone. We’ve built much of the world economy on an industrial model, and that model doesn’t work in an information-centric society. That’s probably the greatest challenge we still face -understanding the old rules don’t apply for the future.”

Earlier this week, another book was published, that also draws on Future Shock for inspiration.  Again, the authors are a husband-and-wife team, Parag and Ayesha Khanna.  And again, the book looks set to redefine key aspects of the futurist endeavour.

This new book is entitled “Hybrid Reality: Thriving in the Emerging Human-Technology Civilization“.  The Khannas refer early on to the insights expressed by the Tofflers in Future Shock:

The Tofflers’ most fundamental insight was that the pace of change has become as important as the content of change… The term Future Shock was thus meant to capture our intense anxiety in the face of technology’s seeming ability to accelerate time. In this sense, technology’s true impact isn’t just physical or economic, but social and psychological as well.

One simple but important example follows:

Technologies such as mobile phones can make us feel empowered, but also make us vulnerable to new pathologies like nomophobia – the fear of being away from one’s mobile phone. Fifty-eight percent of millennials would rather give up their sense of smell than their mobile phone.

As befits the theme of speed, the book is a fast read. I downloaded it onto my Kindle on the day of its publication, and have already read it all the way through twice. It’s short, but condensed. The text contains many striking turns of phrase, loaded with several layers of meaning, which repay several rethinks. That’s the best kind of sound-bite.

Despite its short length, there are too many big themes in the book for me to properly summarise them here. The book portrays an optimistic vision, alongside a series of challenges and risks. As illustrations, let me pick out a selection of phrases, to convey some of the flavour:

The cross-pollination of leading-edge sectors such as information technology, biotechnology, pervasive computing, robotics, neuroscience, and nanotechnology spells the end of certain turf wars over nomenclature. It is neither the “Bio Age” nor the “Nano Age” nor the “Neuro Age”, but the hybrid of all of these at the same time…

Our own relationship to technology is moving beyond the instrumental to the existential. There is an accelerating centripetal dance between what technologies are doing outside us and inside us. Externally, technology no longer simply processes our instructions on a one-way street. Instead, it increasingly provides intelligent feedback. Internally, we are moving beyond using technology only to dominate nature towards making ourselves the template for technology, integrating technologies within ourselves physically. We don’t just use technology; we absorb it

The Hybrid Age is the transition period between the Information Age and the moment of Singularity (when machine surpass human intelligence) that inventor Ray Kurzweil estimates we may reach by 2040 (perhaps sooner). The Hybrid Age is a liminal phase in which we cross the threshold toward a new mode of arranging global society…

You may continue to live your life without understanding the implications of the still-distant Singularity, but you should not underestimate how quickly we are accelerating into the Hybrid Age – nor delay in managing this transition yourself

The dominant paradigm to explain global change in the Hybrid Age will be geotechnnology. Technology’s role in shaping and reshaping the prevailing order, and accelerating change between orders, forces us to rethink the intellectual hegemony of geopolitics and geoeconomics…

It is geotechnology that is the underlying driver of both: Mastery in the leading technology sectors of any era determines who leads in geoeconomics and dominates in geopolitics…

The shift towards a geotechnology paradigm forces us to jettison centuries of foundational assumptions of geopolitics. The first is our view on scale: “Bigger is better” is no longer necessarily true. Size can be as much a liability as an asset…

We live and die by our Technik, the capacity to harness emerging technologies to improve our circumstances…

We will increasingly differentiate societies on the basis not of their regime type or income, but of their capacity to harness technology. Societies that continuously upgrade their Technik will thrive…

Meeting the grand challenge of improving equity on a crowded planet requires spreading Technik more than it requires spreading democracy

And there’s lots more, applying the above themes to education, healthcare, “better than new” prosthetics, longevity and rejuvenation, 3D printing, digital currencies, personal entrepreneurship and workforce transformation, the diffusion of authority, the rise of smart cities and their empowered “city-zens”, augmented reality and enhanced personal avatars, robots and “avoiding robopocalypse”, and the prospect for a forthcoming “Pax Technologica”.

It makes me breathless just remembering all these themes – and how they time and again circle back on each other.

Footnote: Readers who are in the vicinity of London next Saturday (23rd June) are encouraged to attend the London Futurist / Humanity+ UK event “Hybrid Reality, with Ayesha Khanna”. Click on the links for more information.

9 May 2010

Chapter completed: Crises and opportunities

Filed under: alienation, change, climate change, Economics, H+ Agenda, recession, risks, terrorism — David Wood @ 12:16 am

I’ve taken the plunge.  I’ve started writing another book, and I’ve finished the first complete draft of the first chapter.

The title I have in mind for the book is:

The Humanity+ Agenda: the vital priorities for the coming decade

The book is an extended version of the 10 minute opening presentation I gave a couple of weeks ago, at the Humanity+ UK 2010 event.  My reasons for writing this book are spelt out here.  The book will re-use and refine a lot of the material I’ve tried out from time to time in earlier posts on this blog, so you may find parts of it familiar.

I’ve had a few false starts, but I’m now happy with both the framework for the book (9 chapters in all) and a planned editing/review process.

Chapter 1 is called “Crises and opportunities”.  There’s a copy of the current draft below.

I’ll keep the latest drafts of all the chapters in the “Pages” section of this blog – accessible from the box on the right hand side.  From time to time – as in this posting – I’ll copy snapshots of the latest material into regular blogposts.

It’s my hope that the book will benefit from feedback and suggestions from readers.  Comments can be made, either to regular blogposts, or to the “pages”.  I’m also open to receiving emailed comments or contributions.  Unless someone tells me otherwise, I’ll assume that anything posted in response is intended as a potential contribution to the book.

(I’ll acknowledge, in the acknowledgements section of the book, all contributions that I use.)

========

1. Crises and opportunities

<Snapshot of material whose master copy is kept here>

The decade 2010-2019 will be a decade of crises for humanity:

  • As hundreds of millions of people worldwide significantly change their lifestyles, consuming ever more energy and generating ever more waste, the planet Earth faces increasingly great strains. “More of the same” is not an acceptable response.
  • Alongside the risk of environmental disaster, another risks looms: that of economic meltdown. The massive shocks to the global finance system at the end of the previous decade bear witness to powerful underlying tensions and problems with the operation of market economies.
  • The rapid rate of change causes widespread personal frustration and societal angst, driving a significant minority of people into the arms of beguiling ideologies such as fundamentalist Islam and the militant pursuit of terrorism. Relatively easy access to potential weapons of mass destruction – whether nuclear, biological, or chemical – transforms the threat of terrorism from an issue of national security into an issue of global survival.

In aggregation, these threats are truly fearsome.

To improve humanity’s chances of surviving, in good shape, to 2020 and beyond, we need new solutions.

I believe that these new solutions are emerging in part from improved technology, and in part from an important change in attitude towards technology. This book explains the basis for these beliefs.  This chapter summarises the crises, and the remaining chapters summarise the proposed solutions.

In the phrase “Humanity+”, the plus sign after the word “Humanity” emphasises that solutions to our present situation cannot be achieved by people continuing to do the same as before. Instead, a credible vision of wise application of new technologies can bring humans – both individually and collectively – to operate in dramatically enhanced ways:

  • Humans will be able, in stages, to break further free from the crippling constraints and debilitations of our evolutionary background and our historical experiences;
  • We will, individually and collectively, become smarter, wiser, stronger, kinder, healthier, calmer, brighter, more peaceful, and more fulfilled;
  • Instead of fruitless divisions and conflicts, we’ll find much better ways to cooperate, and build social systems for mutual benefit.

This is the vision of humanity fulfilling its true potential.

But there are many obstacles on the path to this fulfilment.  These obstacles could easily drive Humanity to “Humanity-” (humanity minus), or even worse (human annihilation), rather than Humanity+.  There’s nothing inevitable about the outcome.  As a reminder of the scale of the obstacles, let’s briefly review five interrelated pending crises.

1.1 The environmental crisis

Potential shortages of clean drinking water.  Rapid reductions in the available stocks of buried energy sources, such as coal, gas, and oil.  Crippling impacts on our environment from the waste products of our lifestyles.  These – and more – represent the oncoming environmental crisis.

With good reason, the aspect of the environmental crisis that is most widely discussed is the potential threat of runaway climate change.  Our accelerating usage of fossil fuels means that carbon dioxide (CO2) in the atmosphere has reached levels unprecedented in human history.  This magnifies the greenhouse effect of the atmosphere, tending to push the average global temperature higher.  This relationship is complex.  Forget simple ideas about increases in factor A invariably being the cause of increases in factor B.  Think instead about a dance of different factors that each influence the other, in different ways at different times.  (That’s a theme that you’ll notice throughout this book.)

In the case of climate change, the players in the dance include:

  • Variation in the amount of sunlight striking earth landmasses, due to changes over geological timescales in the axis of the earth, the eccentricity of the earth’s orbit, and the distribution of landmass over different latitudes;
  • Variation in the slow-paced transfer of heat between different parts of the ocean;
  • Variation in the speed of build-up or collapse of huge polar ice sheets;
  • Variation in numerous items in the atmosphere, including aerosols (which tend to lower average temperature) and greenhouse gases (which tend to raise it again);
  • Variation in the amounts of greenhouse gases, such as methane, being suddenly released into the atmosphere from buried frozen stores (for example, from tundra);
  • Variation in the sensitivity of the planet to the various “climate forcing agents” – sometimes a small change in one will lead to just small changes in the climate, but at other times the consequences are more severe.

What makes this dance potentially deadly is the twin risk of latent momentum and strong positive feedback:

  • More CO2 in the atmosphere raises the average temperature, which means there’s more H2O (water vapour) in the atmosphere too, raising the average temperature yet further;
  • Icesheets over the Antarctic and Greenland take a long time to start to disintegrate, but once the process gets under way, it can become essentially irreversible;
  • Less ice on the planet means less incoming sunlight is reflected to space; instead, larger areas of water absorb more of the sunlight, increasing ocean temperature further;
  • Rises in sea temperatures can trigger the sudden release of huge amounts of greenhouse gases from methane clathrate compounds buried in seabeds and permafrost – another example of rapid positive feedback.

Indeed, there is significant evidence that runaway methane clathrate breakdown may have caused drastic alteration of the ocean environment and the atmosphere of earth a number of times in the past, most notably in connection with the Permian extinction event, when 96% of all marine species became extinct about 250 million years ago.

Of course, predicting the future of the environment is hard.  There are three sorts of fogs of climate change uncertainty:

  1. Many of the technical interactions are still unknown, or are far from being fully understood.  We are continuing to learn more;
  2. Even where we believe we do understand the technical interactions, many of the detailed interactions are unpredictable.  Just as it’s hard to predict the weather itself, one month (say) into the future, it’s hard to predict the exact effect of ongoing climate forcing agents.  The effect that “a butterfly flapping its wings unpredictably causes a hurricane on the other side of the planet” applies for the chaos of climate as much as for the chaos of weather;
  3. There are huge numbers of vested interests, who (consciously or sub-consciously) twist and distort aspects of the argument over climate change.

The vested interests include:

  • Both anti-nuclear and pro-nuclear campaigners;
  • Both anti-oil and pro-oil campaigners, and anti-coal and pro-coal campaigners;
  • Both “small is beautiful” and “big is beautiful” campaigners;
  • Both “back to nature” and “pro-technology” campaigners;
  • Scientists and authors who have long supported particular theories, and who are loath to change their viewpoints;
  • Hardened political campaigners who look to extract maximum concessions, for the region or country they represent, before agreeing a point of negotiation.

Not only is it psychologically hard for individuals to objectively review data or theories that conflicts with their favoured opinions.  It is economically hard for companies (such as energy companies) to accept viewpoints that, if true, would cause major hurdles for their current lines of business, and significant loss of jobs.  On the other hand, just because researcher R has strong psychological reason P and/or strong economic incentive E in favour of advocating viewpoint V, it does not mean that viewpoint V is wrong.  The viewpoint could be correct, even though some of the support advanced in its favour is non-logical.  As I said, there’s lots of fog to navigate!

Despite all this uncertainty, I offer the following conclusions:

  • There is a wide range of possible outcomes, for the climate in the next few decades;
  • The probability of runaway global warming – with disastrous effects on sea levels, drought, agriculture, storms, species and ecosystem displacement, travel, business, and so on – is at least 20%, and likely higher;
  • Global warming won’t just make the temperature higher; it will make the weather more extreme – due to increased global temperature gradients, increased atmospheric water vapour, and higher sea temperatures that stir up more vicious storms.

A risk of at least 20% of a global environmental disaster deserves urgent attention and further analysis.  Who among us would enter an airplane with family and friends, if we believed there was a 20% probability of that airplane plummeting headlong out of the sky to the ground?

1.2 The economic crisis

The controversies and uncertainties over the potential threat of runaway climate change find parallels in discussions over a possible catastrophic implosion of the world economic system.  These discussions likewise abound with technical disagrements and vested interests.

Are governments, legislators, banks, and markets generally wise enough and capable to oversee the pressures of financial trading, and keep the systems afloat?  Was the recent series of domino-like collapses of famous banks around the world a “once in a lifetime” abnormality, that is most unlikely to repeat?  Or should we expect a recurrence of fundamental financial instability?  What is the risk of a larger financial crisis striking?  Indeed, what is the risk of adverse follow-on effects from the “tail end” of the 2008-2009 crisis, generating a so-called “double dip” in which the second dip is more drastic than the first?  On all these questions, opinions vary widely.

Despite the wide variation in opinions, some elements seem common.  All commentators are fearful of some potential causes of major disruption to global economics.  Depending on the commentator, these perceived potential causes include:

  • Clumsy regulation of financial markets;
  • Bankers who are able to take catastrophic risks in the pursuit of ever greater financial rewards;
  • The emergence of enormous monopoly powers that eliminate the benefits of marketplace competition;
  • Institutions that become “too big to fail” and therefore derail the appropriate workings of the market system;
  • Sky-high accumulation of debts, with individuals and countries living far beyond their means, for too long;
  • Austerity programmes that attempt to reduce debts quickly, but which could provoke spiraling industrial disputes and crippling strikes;
  • Bubbles that grow because “it’s temporarily rational for everyone to be irrational in their expectations” and then burst with tremendous damage.

We must avoid a feeling of overconfidence arising from the fact that previous financial crises were, in the end, survived, without the world of banking coming to an end.  First, these previous financial crises caused numerous local calamities – and the causes of major wars can be traced (in part) to these crises.  Second, there are reasons why future financial problems could have more drastic effects than previous ones:

  • There are numerous hidden interconnections between different parts of the global  economy, which accelerate negative feedback when individual parts fail;
  • The complexity of new financial products far outstrips the ability of senior managers and regulators to understand and appreciate the risks involved;
  • In an age of instant electronic connections, the speed of cascading events can catch us all flat-footed.

For these reasons, I tentatively suggest we assign a ballpark risk factor of about 20% to the probability of a major global financial meltdown during the 2010s.  (Yes, this is the same numeric figure as I picked for the environmental crisis too.)

Note some parallels between the two crises I’ve already discussed:

  • In each case, the devil is in the mix of weakly-understood powerful feedback systems;
  • Again in each case, our ability to discern what’s really happening is clouded by powerful non-rational factors and vested interests;
  • Again in each case, the probabilities of major disaster cannot be calculated in any precise way, but the risk appears large enough to warrant very serious investigation of solutions;
  • Again in each case, there is deep disagreement about the best solutions to deploy.

Worse, these two looming crises are themselves interconnected.  Shortage of resources such as clean energy could trigger large price hikes which throw national economies into tailspins.  Countries or regions which formerly cooperated could end up at devastating loggerheads, if an “abundance spirit” is replaced by a “scarcity spirit”.

1.3 The extreme terrorist crisis

What drives people to use bombs to inflict serious damage?  Depending on the cirumstance, it’s a combination of:

  • Positive belief, in support of some country, region, ideology, or religion;
  • Negative belief, in which a group of people (“the enemy”) are seen as despicable, inferior, or somehow deserving of destruction or punishment;
  • Peer pressure, where people feel constrained by those around them to follow through on a commitment (to become, for example, a suicide bomber);
  • Personal rage, such as a desire for revenge and humiliation;
  • Aspiration for personal glory and reward, in either the present life, or a presumed afterlife;
  • Failure of countervailing “pro-cooperation” and “pro-peace” instincts or systems.

Nothing here is new for the 2010s.  What is new is the increased ease of access, by would-be inflictors of damage, to so-called weapons of mass destruction.  There is a fair probability that the terrorists who piloted passenger jet airlines into the Twin Towers and the Pentagon would have willingly caused even larger amounts of turmoil and damage, if they could have put their hands on suitable weapons.

Technology itself is neutral.  A hammer which can be used to drive a nail into a piece of wood can equally be used to knock a fellow human unconscious.  Electricity can light up houses or fry someone in an electric chair.  Explosives can clear obstacles during construction projects or can obliterate critical infrastructure assets of so-called enemies.  Biochemical manipulation can yield wonderfully nutritious new food compounds or deadly new diseases.  Nuclear engineering can provide sufficient energy to free humanity from dependency on carbon-laden fossil fuels, or suitcase-sized portable weapons capable of tearing the heart out of major cities.

As technology becomes more widely accessible – via improved education worldwide, via cheaper raw materials, and via easy access to online information – the potential grows, both for good uses and for bad uses.  A saying attributed to Eliezer Yudkowsky gives us pause for thought:

The minimum IQ required to destroy the world drops by one point every 18 months.

(This saying is sometimes called “Moore’s Law of mad scientists“.)  The statement was probably not intended to be interpreted mathematically exactly, but we can agree that, over the course of a decade, the number of people capable of putting together a dreadful weapon of mass destruction will grow significantly.  The required brainpower will move from the rarified tails of the bell curve of intelligence distribution, in the direction of the more fully populated central region.

We can imagine similar “laws” of increasing likelihood of destructive capability:

The minimum IQ required to devise and deploy a weapon that wipes out the heart of a major city drops by one point every 18 months;

The minimum IQ required to poison the water table for a region drops by one point every 18 months;

The minimum IQ required to unleash a devastating plague drops by one point every 18 months…

Of course, the threat of nuclear annihilation has been with the world for half a century.  During my student days at Cambridge University, I participated in countless discussions about how best to avoid the risk of unintentional nuclear war.  Despite the forebodings of some of my contemporaries at the time, we reached the end of the 20th century unscathed.  Governments of nuclear-capable countries, regardless of their political hues and ideological positions, found good reason to avoid steps that could trigger any nuclear escalation.  What’s different with at least some fundamentalist terrorists is that they operate in a mental universe that is considerably more extreme:

  • They live for a life beyond the grave, rather than before it;
  • They believe that divine providence will take care of the outcome – any “innocents” caught up in the destruction will receive their own rewards in the afterlife, courtesy of an all-seeing, all-knowing deity;
  • They are nourished and inspired by apocalyptic writing that glorifies a vision of almighty destruction;
  • They operate with moral certainty: they seem to harbour no doubts or questions about the rightness of their course of action.

Mix this extreme mindset with sufficient raw brainpower and with weapons-grade materials that can be begged, bought, or stolen, and the stage is set for a terrorist outrage that will put 9/11 far into the shade.  In turn, the world’s reaction to that incident is likely to put the reaction to 9/11 far into its own shade.

It’s true, would-be terrorists are often incompetent.  Their explosives sometimes fail to detonate.  But that must give us no ground for complacency.  The same “incompetence” can sometimes result in unforeseen consequences that are even more destructive than those intended.

1.4 The sense of profound personal alienation

Environmental crisis.  Economic crisis.  Extreme terrorist crisis.  Added together, we might be facing a risk of around 50% that, sometime during the 2010s, we’ll collectively look back with enormous regret and say to ourselves:

That’s the worst thing that’s happened in our lifetime.  Why oh why didn’t we act to stop it happening?  But it’s too late to make amends now.  If only we could re-run history, and take wiser choices…

But there’s more.  Here’s a probability that I’ll estimate at 100%, rather than 50%.  It’s the probability that huge numbers of individuals will look at their lives with bitter regret, and say to themselves:

This outcome was very far from the best it could have been.  This human life has missed, by miles, the richness and quality of experience that was potentially available.  Why oh why did it turn out like this?  If only I could re-run my life, and take wiser choices, or benefit from improved circumstances…

The first three crises are global crises.  This fourth one is a personal crisis.  The first three are highly visible.  The fourth might just be an internal heartache.  It’s the realisation that:

  • Life provides, at least for some people, on at least some occasions, intense feelings of vitality, creativity, flow, rapport, ecstacy, and accomplishment;
  • These “peak experiences” are generally rare, or just glimpsed;
  • The majority of human experience is at a much lower level of quality than is conceivable.

The pervasive video broadcast communications of the modern age make it all the more obvious, to increasing numbers of people, that the quality of their lives fall short of what could be imagined and desired.  These same communications also strongly hint that technology is advancing to the point where it could soon free people from the limitations of their current existence, and enable levels of experience previously only imagined for deities.  Just around the corner lies the potential of lives that are much extended, expanded, and enhanced.  How frustrating to miss out on this potential!  It brings to mind the lamentations of a venerable French noblewoman from 1783, as noted in Lewis Lapham’s 2003 Commencement speech at St. John’s College Annapolis:

[A] French noblewoman, a duchess in her eighties, …, on seeing the first ascent of Montgolfier’s balloon from the palace of the Tuilleries in 1783, fell back upon the cushions of her carriage and wept. “Oh yes,” she said, “Now it’s certain. One day they’ll learn how to keep people alive forever, but I shall already be dead.”

Acts of gross destruction are often motivated by deep feelings of dissatisfaction or frustration: the world is perceived as containing significant wrongs, that need righting.  So there’s a connection between the crisis of profound personal alienation and the crisis of extreme terrorism.  Thankfully, people who experience dissatisfaction or frustration don’t all react in the same way.  But even if the reaction is only (as I suggested earlier) an internal heartache, the shortcoming between potential and reality is nonetheless profound.  Life could, and should, be so much better.

We can re-state the four crises as four huge opportunities:

  1. The opportunity to nurture an amazingly pleasant, refreshing, and intriguing environment;
  2. The opportunity to guide global economic development to sustainably create sufficient resources for everyone’s needs;
  3. The opportunity to utilise personal passions for constructive projects;
  4. The opportunity to enable individuals to persistently experience qualities of human life far, far higher than at present.

I see Humanity+ as addressing all four of these opportunities.  And it does so with an eye on one more crisis, which is the most uncertain one of the lot.

1.5 The existential crisis of accelerating change and deepening complexity

Time and again, changes have consequences that are unforeseen and unintended.  The more complex the system, the greater the likelihood of changes leading to unintended consequences.

However, human society is becoming more complex all the time:

  • Multiple different cultures and sub-cultures overlap, co-exist, and influence each other;
  • Worldwide travel is nowadays commonplace;
  • Increasing numbers of channels exist for communication and influence ;
  • Society is underpinned by a rich infrastructure of multi-layered technology.

Moreover, the rate of change is increasing:

  • New products sweep around the world in ever shorter amounts of time;
  • Larger numbers of people are being educated to levels never seen before, and are entering the worlds of research, development, manufacturing, and business;
  • Online collaboration mechanisms, including social networks, wikis, and open source software, mean it is easier for innovation in one part of the world to quickly influence and benefit subsequent innovation elsewhere;
  • The transformation of more industries from “matter-dominated” to “information-dominated” means that the rapid improvement cycle of semiconductors transforms the speed of progress.

These changes bring many benefits.  They also bring drawbacks, and – due to the law of unintended consequences – they bring lots of unknowns and surprises.  The risk is that we’ll waken up one morning and realise that we deeply regret one of the unforeseen side-effects.  For example, there are risks:

  • That some newly created microscopic-scale material will turn out to have deleterious effects on human life, akin (but faster acting) to the problems arising to exposure from asbestos;
  • That some newly engineered biochemical organism will escape into the wild and turn out to have an effect like that of a plague;
  • That well-intentioned attempts at climate “geo-engineering”, to counter the risk of global warming, will trigger unexpected fast-moving geological phenomenon;
  • That state-of-the-art high-energy physics experiments will somehow create unanticipated exotic new particles that destroy all nearby space and time;
  • That software defects will spread throughout part of the computing infrastructure of modern life, rendering it useless.

Here’s another example, from history.  On 1st March 1954, the US military performed their first test of a dry fuel hydrogen bomb, at the Bikini Atoll in the Marshall Islands.  The explosive yield was expected to be from 4 to 6 Megatons.  But when the device was exploded, the yield was 15 Megatons, two and a half times the expected maximum.  As the Wikipedia article on this test explosion explains:

The cause of the high yield was a laboratory error made by designers of the device at Los Alamos National Laboratory.  They considered only the lithium-6 isotope in the lithium deuteride secondary to be reactive; the lithium-7 isotope, accounting for 60% of the lithium content, was assumed to be inert…

Contrary to expectations, when the lithium-7 isotope is bombarded with high-energy neutrons, it absorbs a neutron then decomposes to form an alpha particle, another neutron, and a tritium nucleus.  This means that much more tritium was produced than expected, and the extra tritium in fusion with deuterium (as well as the extra neutron from lithium-7 decomposition) produced many more neutrons than expected, causing far more fissioning of the uranium tamper, thus increasing yield.

This resultant extra fuel (both lithium-6 and lithium-7) contributed greatly to the fusion reactions and neutron production and in this manner greatly increased the device’s explosive output.

Sadly, this calculation error resulted in much more radioactive fallout than anticipated.  Many of the crew in a nearby Japanese fishing boat, the Lucky Dragon No. 5, became ill in the wake of direct contact with the fallout.  One of the crew subsequently died from the illness – the first human casualty from thermonuclear weapons.

Suppose the error in calculation had been significantly worse – perhaps by an order of thousands rather than by a factor of 2.5.  This might seem unlikely, but when we deal with powerful unknowns, we cannot rule out powerful unforeseen consequences.  Imagine if extreme human activity somehow interfered with the incompletely understood mechanisms governing supervolcanoes – such as the one that exploded around 73,000 years ago at Lake Toba (Sumatra, Indonesia) and which is thought to have reduced the worldwide human population at the time to perhaps as few as one thousand breeding pairs.

It’s not just gargantuan explosions that we need fear.  As indicated above, the list of so-called “existential risks” includes highly contagious diseases, poisonous nano-particles, and catastrophic failures of the electronics infrastructure that underpins modern human society.  Add to these “known unknowns” the risk of “unknown unknowns” – the factors which we currently don’t even know that we should be considering.

The more quickly things change, the harder it is to foresee and monitor all the consequences.  There’s a great deal that deserves our attention.  How should we respond?

>> Next chapter >>

Create a free website or blog at WordPress.com.