dw2

4 October 2019

A Silicon Valley centred view of the prehistory of smartphones

Filed under: films, Psion, smartphones, Smartphones and beyond, Symbian — Tags: , , — David Wood @ 7:11 am

The first thing to say about the film General Magic (official site, IMDb) is that you should watch it.

The film is available on iTunes, and on Amazon Prime, and from lots of other places too.

It tracks the rise and fall of the company with the same name as the film – General Magic – and the impact of the people involved in the subsequent rise of the smartphone industry.

Here’s the trailer:

General Magic was conceived inside Apple in 1989, and, as reported at the time by the New York Times, was spun out as a separate entity in 1990:

Three well-known technologists from Apple Computer Inc., including perhaps its most distinguished programmer, Bill Atkinson, are forming a new company.

Mr. Atkinson and Marc Porat, another Apple researcher, are leaving Apple to form General Magic Inc. They will be joined by Andy Hertzfeld, who designed much of the operating system of the Macintosh computer in the early 1980’s but who has not been with Apple for six years.

The company, which will be based in Mountain View, Calif., will make products known as ”personal intelligent communicators.” While the company would not elaborate, industry analysts believe this refers to handheld devices that can store appointments and other information and transmit and receive information, either over telephone lines or over the airwaves…

Mr. Atkinson, 39 years old, has been with Apple for 12 years. He is best known for developing Hypercard, a program included with every Macintosh that allows users to organize information on computerized notecards…

Dr. Porat, 42, who will be president of General Magic, came to Apple in 1988 and was manager of business development in the advanced technology group.

Much of the vision of the company came from Marc Porat, the company’s first CEO. The film quotes from a visionary email Marc Porat had written in 1990 to John Sculley, at the time Apple’s CEO, about the kinds of devices their platform would enable:

A tiny computer, a phone, a very personal object… It must be beautiful. It must offer the kind of personal satisfaction that a fine piece of jewelry brings. It will have a perceived value even when it’s not being used. It will offer the comfort of a touchstone, the tactile satisfaction of a seashell, the enchantment of a crystal. Once you use it you won’t be able to live without it.

The film also shows a large book of design ideas, dating (it said) back to the same formative era. Here are a couple of sketches from the book:

(the name given to the concept device in this sketch is “remotaphonputer”), and

General Magic operated in stealth mode until 1993. By that time, many of Apple’s key employees had transferred to work there, all inspired by the vision of designing a hardware and software platform for handheld “personal intelligent communicators”. Also by that time, the company had assembled a formidable collection of investors, including AT&T, Sony, Motorola, Philips, and Panasonic. These backers were joined in due course by British Telecom, Cable & Wireless, France Telecom, Fujitsu, Mitsubishi, NTT DoCoMo, Nortel, Sanyo, and Toshiba. All these companies provided a senior executive to what was known as the “Founding Partner’s Council”, and backed General Magic with a financial stake of up to $6M each.

One powerful feature of the film is the interweaving of lots of archival documentary footage, shot during the company’s formative period by Sarah Kerruish. That shows, for example, a young Megan Smith saying that, one day, the technology would fit onto a device as small as a “Dick Tracy wristwatch”. Smith later served under Barack Obama as the USA’s Chief Technology Officer. As it happens, another young employee at General Magic, Kevin Lynch, went on to lead the Apple Watch project. And that’s only the start of the list of stellar accomplishments which lay ahead for one-time General Magic employees. As the film points out, around 98% of the present day smartphone market can be traced to efforts of two people who sat close to each other in the General Magic workspace: Andy Rubin, the designer of Android, and Tony Fadell, who is credited as “father of the iPod” and “co-inventor of the iPhone”. Rubin is mainly missing from the movie, but Fadell appears regularly, speaking with great passion.

With the aid of Goldman Sachs, General Magic IPO’ed in February 1995, in a huge publicity wave. The company’s stock price promptly doubled.

However, the company was already facing many issues. I touched on these in a short section in my own 2014 book Smartphones and Beyond, in the chapter entitled “Die like IBM, or die like Apple”. That chapter referred to various ideas contemplated by Psion in the mid 1990s as its software team laboured to create what would later be known as Symbian OS – software initially targeted for a device code-named “Protea” (this would reach the market in 1997 as the Psion Series 5):

Psion’s confidence about the prospects for its forthcoming 32-bit software system (the future Symbian OS), that was so high when serious coding had started on that system in late 1994, had grown considerably more tentative by the first half of 1996. One reason was the repeated delays in the development project, as mentioned in the previous chapter. But another reason was the changing competitive landscape.

Mounting competition

As the Protea project zigzagged forwards, sideways, and sometimes backwards, with uncertain and seemingly unknowable end date, Psion’s senior management wondered from time to time whether a different software system, obtained from outside the company, might prove a better bet for future mobile products.

For example, there was a period of around a week when senior management were enthralled by the “Magic Cap” system from a Californian company with the audacious name “General Magic”. General Magic had been spun out of Apple in 1990…

Partners and investors for General Magic included Sony, Motorola, AT&T, Philips, Matsushita, and British Telecom. A powerful buzz about the company’s future meant that its stock price doubled on the first day of its IPO in February 1995. It was therefore understandable that Psion senior managers would consider joining the General Magic party, and licence Magic Cap for use in their PDAs. After all, one of them whispered, think of the cost savings from not needing to maintain such a large in-house team of Psion’s own software developers. How much simpler to utilise ready-made software, created by the same team that had achieved such marvels in their earlier careers elsewhere in Silicon Valley! And how cute the Magic Cap software seemed, with its real-world metaphors and winsome bouncing rabbit.

That particular fancy soon evaporated. The Magic Cap software might appear cute, but closer examination revealed shallowness (weak functionality) in practice. The devices brought to market – by Sony and Motorola – were pale shadows of what the General Magic marketing machine had previously led people to expect. In contrast, Psion could see the strength in depth baked into the developing 32-bit Epoc software system. Psion’s development team escaped this particular axe.

(See here for a longer excerpt from that chapter.)

Total sales of the two devices running General Magic’s software were a paltry 3,000 units. The devices fell a long way short of the vision, and had few redeeming features. The company started a brutal downward slide. Investors were left high and dry. The post-IPO stock price of $26 per share had fallen to $1.38 by 1999.

The film highlights a major learning: the way to implement a grand vision is via a series of incremental steps. Don’t try to fit every desired innovation into a single release of a product. Do it in stages, with good quality throughout. That’s a lesson which Tony Fadell took with him from General Magic to Apple in later life, where he oversaw regular increments to the functionality of the iPod, which in time laid the foundation for a similar set of regular increments in the functionality of the iPhone.

What the film emphasises less is the difficulty posed to the company by its wide set of powerful investors and their divergent interests. The governance problems of General Magic were high in the minds of the executives from Ericsson and Nokia who visited Psion’s offices in central London in April 1998 to discuss the potential formation of the Symbian joint venture. With the approval of a team from Nokia that included Mikko Terho and Juha Putkiranta, Ericsson’s Anders Wästerlid included the following points in a set of guiding principles:

Avoid the structure of General Magic

Need to be able to act fast

Need to learn how to deal effectively with conflicts within the group of owners

Yes, Ericsson and Nokia wanted other companies to become involved with the joint venture, in due course. However, they offered this practical observation:

The more people who are in the boat, the tougher it is to start. But it’s easy for more people to jump in once the boat is moving.

(That meeting, as well as many other steps in the formation of Symbian, are covered in a later chapter of my book, “Death Star or Nova”.)

To its credit, the film highlights one more way in which the vision of General Magic failed to anticipate market development: lack of appreciation of the forthcoming importance of the worldwide web. The services accessed on General Magic devices would be provided by the network operator, such as AT&T. It was an intern who, apparently, first drew this omission to the attention of the General Magic leadership.

Where the film does less well is in the implication running nearly all the way through, that the work of General Magic laid a uniquely important basis for what smartphones subsequently became. One commentator states, “Without General Magic, there could never have been Android”.

In this regard, the film provides an overly Silicon Valley centred view of the prehistory of today’s smartphones.

Here’s just some of what’s missing from that view, and from what General Magic was trying to accomplish:

  • The emergence (as just mentioned) of the web
  • Push technology, pioneered by BlackBerry RIM
  • The devices in Japan running on NTT DoCoMo’s network, with their rich ecosystem of iMode apps and services
  • The devices running Brew services on Qualcomm phones
  • Simple PC connectivity, as pioneered by Palm
  • Access to enterprise services, led by Microsoft’s handheld computers
  • Nokia’s first communicator, launched in 1996, running software from GeoWorks
  • The first device marketed as a smartphone, the GS 88 launched by Ericsson in 1997, also running GeoWorks software.

Last, but not least, I am bound to mention the very considerable thinking that took place at Psion, from the early 1980s onwards. When I started work at Psion as a software engineer in June 1988, I discovered that a huge amount of design had already taken place for what would eventually become the Psion Series 3 communicator. That design was an iteration on what Psion had learned in a number of earlier projects, including two generations of handheld organiser products. On the launch of the Organiser in 1984, Psion had declared the device to be “The world’s first practical pocket computer”. This phrase headlined a magazine promotion which can be found, along with lots of other useful archive material, on Eddie Slupski’s ‘Bioeddie’ website. The magazine article went on: “The Psion Organiser will change the way you work.” It was a prescient claim.

(For more about these early design ideas at Psion, see, you guessed it, another chapter from my book, “Before the beginning”. For the causes of Psion’s eventual departure from the consumer handheld space, see later chapters of the same book.)

It’s often said that history gets to be written by the victors. The world’s most successful smartphones, by far, are from two Silicon Valley companies, Apple and Google. Therefore Silicon Valley insiders have the right to emphasise the flow of personnel and ideas from General Magic to these current platforms. Indeed, it’s a fascinating story.

However, my own view is that one dimensional accounts of history – however absorbing – are likely to mislead. The best products and services are able to integrate insights and contributions from multiple diverse backgrounds.

22 June 2018

June 24th: A doubly historic day for Symbian

Filed under: smartphones, Smartphones and beyond, Symbian, Symbian Foundation, Symbian Story — Tags: — David Wood @ 11:13 pm

This Sunday will be the 24th of June 2018. It’s a doubly historic day for Symbian – and for the evolution of the smartphone industry.

Twenty years ago, to the day, the birth of Symbian Ltd was announced to the world. My colleague on the very first Symbian Operational Board, Bill Batchelor, urged all employees of the new company to “make a special note in your Agenda”.

Here’s a copy of my own Agenda file from that day – taken from my Psion Series 5mx:

The name “Symbian” had been a carefully guarded secret up to that day. The new company had been referred to, within planning documents with tightly restricted distribution, as “Nova” – representing an astronomically bright object. The very idea of a new company took nearly all employees of Psion (Symbian’s parent) as a surprise that morning.

The thinking behind the creation of the new company was spelt out at an “Impact” meeting in the Metropole Hotel on London’s Edgware Road. To mark the anniversary of this event, it’s an appropriate occasion for me to share some of the slides presented that day:












With the wisdom of hindsight, these slides can be seen as a mixture of powerful vision and naively audacious optimism.

Fast forward exactly ten years, to 24th June 2008. That morning, I was in Cambridge, ready to share news to all Symbian employees there that another huge transformation was to take place in the Symbian universe. Here’s my Agenda entry for that day:

I can, again, convey the essence of the news via a selection of the slides used on that day:






Once again, with the wisdom of hindsight, these slides can be seen as a mixture of powerful vision and naively audacious optimism.

More of our thinking was captured at the time by blogposts written by me (“Symbian 2-0”) and my Symbian Foundation Leadership Team colleague John Forsyth (“Welcome to the future of Symbian”).

The thinking behind the Symbian Foundation also built upon an inspired piece of strategic communication from earlier in 2008, led by Symbian’s CEO from that time, Nigel Clifford. He called it “the Symbian story”:






Did either of these powerful visions, set out ten years apart, have much of a chance of becoming a reality? Opinions still differ on these questions. I’ve set out my own analysis in my book “Smartphones and beyond: lessons from the remarkable rise and fall of Symbian” (published in September 2014).

Footnote

Any former Symbian employee who wishes to take part in some face-to-face reminiscences, and who can be near Symbian’s former headquarters in Boundary Row, Southwark, London, on the evening of Friday 29th June, is welcome to get in touch. Several of us will be gathering, ready to share news and views of what was, and what might have been.

7 September 2014

Beyond ‘Smartphones and beyond’

You techno-optimists don’t understand how messy real-life projects are. You over-estimate the power of technology, and under-estimate factors such as sociology, psychology, economics, and biology – not to mention the cussed awkwardness of Murphy’s Law.

That’s an example of the kind of retort that has frequently come to my ears in the last few years. I have a lot of sympathy for that retort.

I don’t deny being an optimist about what technology can accomplish. As I see things:

  • Human progress has taken place by the discovery and adoption of engineering solutions – such as fire, the wheel, irrigation, sailing ships, writing, printing, the steam engine, electricity, domestic kitchen appliances, railways and automobiles, computers and the Internet, plastics, vaccinations, anaesthetic, contraception, and better hygiene
  • Forthcoming technological improvements can propel human experience onto an even higher plane – with our minds and bodies both being dramatically enhanced
  • As well as making us stronger and smarter, new technology can help us become kinder, more collaborative, more patient, more empathetic, less parochial, and more aware of our cognitive biases and blindspots.

But equally, I see lots of examples of technology failing to live up to the expectations of techno-optimists. It’s not just that technology is a two-edged sword, and can scar as well as salve. And it’s not just that technology is often mis-employed in search of a “techno-solution” when a piece of good old-fashioned common sense could result in a better approach. It’s that new technologies – whether ideas for new medical cures, new sustainable energy sources, improved AI algorithms, and so on – often take considerably longer than expected to create useful products. Moreover, these products often have weaker features or poorer quality than anticipated.

Here’s an example of technology slowdown. A 2012 article in Nature coined the clever term “Eroom’s Law” to describe a steady decline in productivity of R&D research in new drug discovery:

Diagnosing the decline in pharmaceutical R&D efficiency

Jack W. Scannell, Alex Blanckley, Helen Boldon & Brian Warrington

The past 60 years have seen huge advances in many of the scientific, technological and managerial factors that should tend to raise the efficiency of commercial drug research and development (R&D). Yet the number of new drugs approved per billion US dollars spent on R&D has halved roughly every 9 years since 1950, falling around 80-fold in inflation-adjusted terms.

In other words, although the better-known Moore’s Law describes a relatively steady increase in computational power, Eroom’s Law describes a relatively steady decrease in the effectiveness of research and development within the pharmaceutical industry. By the way, Eroom isn’t a person: it’s Moore spelt backwards.

The statistics are bleak, as can be seen in a graph from Derek Lowe’s In the pipeline blog:

R&D trend

But despite this dismal trend, I still see plenty of reason for measured optimism about the future of technology. That’s despite the messiness of real-world projects, out-dated regulatory and testing systems, perverse incentive schemes, institutional lethargy, and inadequate legacy platforms.

This measured optimism comes to the surface in the later stages of the book I have just e-published, at the end of a two-year period of writing it. The book is entitled Smartphones and beyond: lessons from the remarkable rise and fall of Symbian.

As I write in the opening chapter of that book (an excerpt is available online):

The story of the evolution of smartphones is fascinating in its own right – for its rich set of characters, and for its colourful set of triumphs and disasters. But the story has wider implications. Many important lessons can be drawn from careful review of the successes and, yes, the failures of the smartphone industry.

When it comes to the development of modern technology, things are rarely as simple as they first appear. Some companies bring great products to the market, true. These companies are widely lauded. But the surface story of winners and losers can conceal many twists and turns of fortune. Behind an apparent sudden spurt of widespread popularity, there frequently lies a long gestation period. The eventual blaze of success was preceded by the faltering efforts of many pioneers who carved new paths into uncertain terrain. The steps and missteps of these near-forgotten pioneers laid the foundation for what was to follow.

So it was for smartphones. It is likely to be the same with many of the other breakthrough technologies that have the potential to radically transform human experience in the decades ahead. They are experiencing their missteps too.

I write this book as an ardent fan of the latent power of modern technology. I’ve seen smartphone technology playing vital roles in the positive transformation of human experience, all over the world. I expect other technologies to play even more radical roles in the near future – technologies such as wearable computing, 3D printing, synthetic biology, nanotechnology, neuro-enhancement, rejuvenation biotech, artificial intelligence, and next generation robotics. But, as with smartphones, there are likely to be many disappointments en route to eventual success. Indeed, even the “eventual success” cannot be taken for granted.

General principles about the progress of complex technology emerge from reflecting on the details of actual examples. These details – the “warts and all”, to use the phrase attributed to Oliver Cromwell – can confound naive notions as to how complex technology should be developed and applied. As I’ll show from specific examples in the chapters ahead, the details show that failure and success often co-exist closely within the same project. A single project often contains multiple layers, belonging to numerous different chains of cause and effect.

It is my sincere hope that an appreciation of real-world examples of these multiple layers of smartphone development projects will enable a better understanding of how to guide the future evolution of other forms of smart technology. I’ll describe what I call “the core smartphone skillset”, comprising excellence in the three dimensions of “platforms”, “marketing”, and “execution”. To my mind, these are the key enablers of complex technological progress. These enablers have a critical role to play for smartphones, and beyond. Put together well, these enablers can climb mountains.

I see the core smartphone skillset as having strong applicability in wider technological areas. That skillset provides the basis for overcoming the various forms of inertia which are holding back the creation of important new solutions from emerging technologies. The existence of that skillset underlies my measured optimism in the future.

But there’s nothing inevitable about how things will turn out. The future holds many potential scenarios, with varying degrees of upside and downside. The question of which scenarios will become actual, depends on inspired human vision, choice, action, and follow-through. Fortune sometimes hinges on the smallest of root causes. Effects can then cascade.

Hits and misses

As well as the description of the core smartphone skillset” – which I see as having strong applicability in wider technological areas – the book contains my thoughts as the things that Symbian did particularly well over the years, resulting in it becoming the leading smartphone operating system for many years in the first decade of this century:

  1. Investors and supporters who were prepared to take a long-term view of their investments
  2. Regular deliveries against an incremental roadmap
  3. Regularly taking the time to improve the architecture of the software and the processes by which it was delivered
  4. High calibre software development personnel
  5. Cleanly executed acquisitions to boost the company’s talent pool
  6. Early and sustained identification of the profound importance of smartphones
  7. Good links with the technology foresight groups and other roadmap planning groups within a range of customers
  8. A product that was open to influence, modification, and customisation by customers
  9. Careful attention given to enabling an ecosystem of partners
  10. An independent commercial basis for the company, rather than it being set up as a toothless “customers’ cooperative”
  11. Enabling competition.

Over the course of that time, Symbian:

  • Opened minds as to what smartphones could accomplish. In particular, people realised that there was much more they could do with mobile phones, beyond making phone calls. This glimpse encouraged other companies to enter this space, with alternative smartphone platforms that achieved, in the end, considerably greater success
  • Developed a highly capable touch UI platform (UIQ), years before Android/iPhone
  • Supported a rich range of different kinds of mobile devices, all running versions of the same underlying software engine; in particular, Symbian supported the S60 family of devices with its ergonomically satisfying one-handed operating mode
  • Achieved early demonstrations of breakthrough capabilities for mobile phones, including streaming multimedia, smooth switching between wifi and cellular networks, maps with GPS updates, the use of a built-in compass and accelerometer, and augmented reality – such as in the 2003 “Mozzies” (“Mosquitos”) game for the Siemens SX1
  • Powered many ground-breaking multimedia smartphones, imaging smartphones, business smartphones, and fashion smartphones
  • Achieved sales of some 500 million units – with the majority being shipped by Nokia, but with 40 million being shipped inside Japan from 2003 onwards, by Fujitsu, Sharp, Mitsubishi, and Sony Ericsson
  • Held together an alliance of competitors, among the set of licensees and partners of Symbian, with the various companies each having the opportunity to benefit from solutions initially developed with some of their competitors in mind
  • Demonstrated that mobile phones could contain many useful third party applications, without at the same time becoming hotbeds of viruses
  • Featured in some of the best-selling mobile phones of all time, up till then, such as the Nokia 5230, which sold 150 million units.

Alongside the list of “greatest hits”, the book also contains a (considerably longer) list of “greatest misses”, “might-have-beens”, and alternative histories. The two lists are distilled from wide-ranging “warts and all” discussions in earlier chapters of the book, featuring many excerpts from my email and other personal archives.

LFS cover v2

To my past and present colleagues from the Symbian journey, I offer my deep thanks for all their contributions to the creation of modern smartphones. I also offer my apologies for cases when my book brings back memories of episodes that some participants might prefer to forget. But Symbian’s story is too important to forget. And although there is much to regret in individual actions, there is much to savour in the overall outcome. We can walk tall.

The bigger picture now is that other emerging technology sectors risk repeating the stumbles of the smartphone industry. Whereas the smartphone industry recovered from its early stumbles, these other industries might not be so fortunate. They may die before they get off the ground. Their potential benefits might remain forever out of grasp, or be sorely delayed.

If the unflattering episodes covered in Smartphones and beyond can help increase the chance of these new technology sectors addressing real human need quickly, safely, and fully, then I believe it will be worth all the embarrassment and discomfort these episodes may cause to Symbian personnel – me included. We should be prepared to learn from one of the mantras of Silicon Valley: “embrace failure”. Reflecting on failure can provide the launchpad for greater future success, whether in smartphones, or beyond.

Early reviewers of the book have commented that the book is laden with lessons, from the pioneer phase of the smartphone industry, for the nascent technology sectors where they are working – such as wearable computing, 3D printing, social robots, and rejuvenation biotechnology. The strength of these lessons is that they are presented, in this book, in their multi-dimensional messiness, with overlapping conflicting chains of cause and effect, rather than as cut-and-dried abstracted principles.

In that the pages of Smartphones and beyond, I do choose to highlight some specific learnings from particular episodes of smartphone success or smartphone failure. Some lessons deserve to be shouted out. For other episodes, I leave it to readers to reach their own conclusions. In yet other cases, frankly, it’s still not clear to me what lessons should be drawn. Writers who follow in my tracks will no doubt offer their own suggestions.

My task in all these cases is to catalyse a discussion, by bringing stories to the table that have previously lurked unseen or under-appreciated. My fervent hope is that the discussion will make us all collectively wiser, so that emerging new technology sectors will proceed more quickly to deliver the profound benefits of which they are capable.

Some links

For an extended series of extracts from the different chapters in Smartphones and beyond, see the official website for the book.

The book is available for Kindle download from Amazon: UK site and International (US) site.

  • Note that readers without Kindle devices can read the book on a convenient app on their PC or tablet (or smartphone!) – these apps are freely available.

I haven’t created a hard-copy print version. The book would need to be split into three parts to make it physically convenient. Far better, in my view, to be able to carry the book on a light electronic device, with “search” and “bookmark” facilities that very usefully augment the reading experience.

Opportunities to improve

Smartphones and beyond no doubt still contains a host of factual mistakes, errors in judgement, misattributions, personal biases, blind spots, and other shortcomings. All these faults are the responsibility of the author. To suggest changes, either in an updated edition of this book or in some other follow-up project, please get in touch.

Where the book includes copies of excerpts from Internet postings, I have indicated the online location where the original article could be found at the time of writing. In case an article has moved or been deleted since then, it can probably be found again via search engines or the Internet archive, https://archive.org/. If I have inadvertently failed to give due credit to an original writer, or if I have included more text than the owner of the original material wishes, I will make amends in a later edition, upon reasonable request. Quoted information where no source is explicitly indicated is generally taken from copies of my emails, memos in my electronic diary, or other personal archives.

One of the chapters of this book is entitled “Too much openness”. Some readers may feel I have, indeed, been too open with some of the material I have shared. However, this material is generally at least 3-5 years old. Commercial lines of business no longer depend on it remaining secret. So I have applied a historian’s licence. We can all become collectively wiser by discussing it now.

Footnote

Finally, one other apology is due. As I’ve given my attention over the last few months to completing Smartphones and beyond, I’ve deprioritised many other tasks, and have kept colleagues from various important projects waiting for longer than they expected. I can’t promise that I’ll be able to pick up all these other pieces quickly again – that kind of overcommitment is one of the failure modes discussed throughout Smartphones and beyond. But I feel like I’m emerging for a new phase of activity – “Beyond ‘Smartphones and Beyond'”.

To help transition to that new phase, I’ve moved my corporate Delta Wisdom website to a new format (WordPress), and rejigged what had become rather stale content. It’s time for profound change.

Banner v6

 

5 January 2014

Convictions and actions, 2014 and beyond

In place of new year’s resolutions, I offer five convictions for the future:

First, a conviction of profoundly positive near-term technological possibility. Within a generation – within 20 to 40 years – we could all be living with greatly improved health, intelligence, longevity, vigour, experiences, general well-being, personal autonomy, and social cohesion. The primary driver for this possibility is the acceleration of technological improvement.

In more detail:

  • Over the next decade – by 2025 – there are strong possibilities for numerous breakthroughs in fields such as 3D printing, wearable computing (e.g. Google Glass), synthetic organs, stem cell therapies, brain scanning, smart drugs that enhance consciousness, quantum computing, solar energy, carbon capture and storage, nanomaterials with super-strength and resilience, artificial meat, improved nutrition, rejuvenation biotech, driverless cars, robot automation, AI and Big Data transforming healthcare, improved collaborative decision-making, improved cryonic suspension of people who are biologically dead, and virtual companions (AIs and robots).
  • And going beyond that date towards mid-century, I envision seven “super” trends enabled by technology: trends towards super-materials (the fulfilment of the vision of nanotechnology), super-energy (the vision of abundance), super-health and super-longevity (extension of rejuvenation biotech), super-AI, super-consciousness, and super-connectivity.

Second, however, that greatly improved future state of humanity will require the deep application of many other skills, beyond raw technology, in order to bring it into reality. It will require lots of attention to matters of design, psychology, sociology, economics, philosophy, and politics.

Indeed, without profound attention to human and social matters, over the next 10-20 years, there’s a very real possibility that global society may tear itself apart, under mounting pressures. In the process, this fracturing and conflict could, among lots of other tragic consequences, horribly damage the societal engines for technological progress that are needed to take us forward to the positive future described above. It would bring about new dark ages.

Third, society needs a better calibre of thinking about the future.

Influential figures in politics, the media, academia, and religious movements all too often seem to have a very blinkered view about future possibilities. Or they latch on to just one particular imagining of the future, and treat it as inevitable, losing sight of the wider picture of uncertainties and potentialities.

So that humanity can reach its true potential, in the midst of the likely chaos of the next few decades, politicians and other global leaders need to be focusing on the momentous potential forthcoming transformation of the human condition, rather than the parochial, divisive, and near-term issues that seem to occupy most of their thinking at present.

Fourth, there are plenty of grounds for hope for better thinking about the future. In the midst of the global cacophony of mediocrity and distractedness, there are many voices of insight, vision, and determination. Gradually, a serious study of disruptive future scenarios is emerging. We should all do what we can to accelerate this emergence.

In our study of these disruptive future scenarios, we need to collectively accelerate the process of separating out

  • reality from hype,
  • science fact from science fiction,
  • credible scenarios from wishful thinking,
  • beneficial positive evolution from Hollywood dystopia,
  • human needs from the needs of businesses, corporations, or governments.

Futurism – the serious analysis of future possibilities – isn’t a fixed field. Just as technology improves by a virtuous cycle of feedback involving many participants, who collectively find out which engineering solutions work best for particular product requirements, futurism can improve by a virtuous cycle of feedback involving many participants – both “amateur” and “professional” futurists.

The ongoing process of technological convergence actually makes predictions harder, rather than easier. Small perturbations in one field can have big consequences in adjacent fields. It’s the butterfly effect. What’s more important than specific, fixed predictions is to highlight scenarios that are plausible, explaining why they are plausible, and then to generate debate on the desirability of these scenarios, and on how to enable and accelerate the desirable outcomes.

To help in this, it’s important to be aware of past and present examples of how technology impacts human experience. We need to be able to appreciate the details, and then to try to step back to understand the underlying principles.

Fifth, this is no mere armchair discussion. It’s not an idle speculation. The stakes are really high – and include whether we and our loved ones can be alive, in a state of great health and vitality, in the middle of this century, or whether we will likely have succumbed to decay, disease, division, destruction – and perhaps death.

We can, and should, all make a difference to this outcome. You can make a difference. I can make a difference.

Actions

In line with the above five convictions, I’m working on three large projects over the next six months:

Let me briefly comment on each of these projects.

LF banner narrow

Forthcoming London Futurists event: The Burning Question

The first “real-world” London Futurists meetup in 2014, on Saturday 18th January, is an in-depth analysis of what some people have described as the most complex and threatening issue of the next 10-30 years: accelerated global warming.

Personally I believe, in line with the convictions I listed above, that technology can provide the means to dissolve the threats of accelerated global warming. Carbon capture and storage, along with solar energy, could provide the core of the solution. But these solutions will take time, and we need to take some interim action sooner.

As described by the speaker for the event, writer and consulting editor Duncan Clark,

Tackling global warming will mean persuading the world to abandon oil, coal and gas reserves worth many trillions of dollars – at least until we have the means to put carbon back in the ground. The burning question is whether that can be done. What mix of technology, politics, psychology, and economics might be required? Why aren’t clean energy sources slowing the rate of fossil fuel extraction? Are the energy companies massively overvalued, and how will carbon-cuts affect the global economy? Will we wake up to the threat in time? And who can do what to make it all happen?

For more details and to RSVP, click here.

Note that, due to constraints on the speaker’s time, this event is happening on Saturday evening, rather than in the afternoon.

RSVPs so far are on the light side for this event, but now that the year-end break is behind us, I expect them to ramp up – in view of the extreme importance of this debate.

Forthcoming London Futurists Hangout On Air, with Ramez Naam

One week from today, on the evening of Sunday 12th January, we have our “Hangout on Air” online panel discussion, “Ramez Naam discusses Nexus, Crux, and The Infinite Resource”.

For more details, click here.

Here’s an extract of the event description:

Ramez Naam is arguably one of today’s most interesting and important writers on futurist topics, including both non-fiction and fiction.

  • For example, praise for his Nexus – Mankind gets an upgrade includes:
  • “A superbly plotted high tension technothriller… full of delicious moral ambiguity… a hell of a read.” – Cory Doctorow, Boing Boing
  • “A sharp, chilling look at our likely future.” – Charles Stross
  • “A lightning bolt of a novel. A sense of awe missing from a lot of current fiction.” – Ars Technica.

This London Futurists Hangout on Air will feature a live discussion between Ramez Naam and an international panel of leading futurists: Randal KoeneMichell Zappa, and Giulio Prisco. 

The discussion aims to cover:

  • The science behind the fiction: which elements are strongly grounded in current research, and which elements are more speculative?
  • The philosophy behind the fiction: how should people be responding to the deeply challenging questions that are raised by new technology?
  • Finding a clear path through what has been described as “the best of times and the worst of times” – is human innovation sufficient?
  • What lies next – new books in context.

I’ll add one comment to this description. Over the past week or so, I took the time to listen again to Ramez’s book “Nexus”, and I’m also well through the follow-up, “Crux”. I’m listening to them as audio books, obtained from Audible. Both books are truly engrossing, with a rich array of nuanced characters who undergo several changes in their personal philosophies as events unfold. It also helps that, in each case, the narrators of the audio books are first class.

Another reason I like these books so much is because they’re not afraid to look hard at both good outcomes and bad outcomes of disruptive technological possibility. I unconditionally recommend both books. (With the proviso that they contain some racy, adult material, and therefore may not be suitable for everyone.)

Forthcoming London Futurists Hangout On Air, AI and the end of the human era

I’ll squeeze in mention of one more forthcoming Hangout On Air, happening on Sunday 26th January.

The details are here. An extract follows:

The Hollywood cliché is that artificial intelligence will take over the world. Could this cliché soon become scientific reality, as AI matches then surpasses human intelligence?

Each year AI’s cognitive speed and power doubles; ours does not. Corporations and government agencies are pouring billions into achieving AI’s Holy Grail — human-level intelligence. Scientists argue that AI that advanced will have survival drives much like our own. Can we share the planet with it and survive?

The recently published book Our Final Invention explores how the pursuit of Artificial Intelligence challenges our existence with machines that won’t love us or hate us, but whose indifference could spell our doom. Until now, intelligence has been constrained by the physical limits of its human hosts. What will happen when the brakes come off the most powerful force in the universe?

This London Futurists Hangout on Air will feature a live discussion between the author of Our Final InventionJames Barrat, and an international panel of leading futurists: Jaan TallinnWilliam HertlingCalum Chace, and Peter Rothman.

The main panellist on this occasion, James Barrat, isn’t the only distinguished author on the panel. Calum Chace‘s book “Pandora’s Brain”, which I’ve had the pleasure to read ahead of publication, should go on sale some time later this year. William Hertling is the author of a trilogy of novels

  • Avogadro Corp: The Singularity Is Closer Than It Appears,
  • A.I. Apocalypse,
  • The Last Firewall.

The company Avogadro Corp that features in this trilogy has, let’s say, some features in common with another company named after a large number, i.e. Google. I found all three novels to be easy to read, as well as thought-provoking. Without giving away plot secrets, I can say that the books feature more than one potential route for smarter-than-human general purpose AI to emerge. I recommend them. Start with the first, and see how you get on.

Anticipating 2025

Anticipating Header Star

The near future deserves more of our attention.

A good way to find out about the Anticipating 2025 event is to look at the growing set of “Speaker preview” videos that are available at http://anticipating2025.com/previews/.

You’ll notice that at least some of these videos have captions available, to help people to catch everything the speakers say.

These captions have been produced by a combination of AI and human intelligence:

  • Google provides automatically generated transcripts, from its speech recognition engine, for videos uploaded to YouTube
  • A team of human volunteers works through these transcripts, cleaning them up, before they are published.

My thanks go to everyone involved so far in filming and transcribing the speakers.

Registration for this conference requires payment at time of registration. There are currently nearly 50 people registered, which is a good start (with more than two months to go) towards filling the venue’s capacity of 220.

Early bird registration, for both days, is pegged at £40. I’ll keep early bird registration open until the first 100 tickets have been sold. Afterwards, the price will increase to £50.

Smartphones and beyond

LFS Banner

Here’s a brief introduction to this book:

The smartphone industry has seen both remarkable successes and remarkable failures over the last two decades. Developments have frequently confounded the predictions of apparent expert observers. What does this rich history have to teach analysts, researchers, technology enthusiasts, and activists for other forms of technology adoption and social improvement?

As most regular readers of this blog know, I’ve worked in mobile computing for 25 years. That includes PDAs (personal digital assistants) and smartphones. In these fields, I’ve seen numerous examples of mobile computing becoming more powerful, more useful, and more invisible – becoming a fundamental part of the fabric of society. Smartphone technology which was at one time expected to be used by only a small proportion of the population – the very geeky or the very rich – is now in regular use by over 50% of the population in many countries in the world.

As I saw more and more fields of human interest on the point of being radically transformed by mobile computing and smartphone technology, the question arose in my mind: what’s next? Which other fields of human experience will be transformed by smartphone technology, as it becomes still smaller, more reliable, more affordable, and more powerful? And what about impacts of other kinds of technology?

Taking this one step further: can the processes which have transformed ordinary phones into first smartphones and then superphones be applied, more generally, to transform “ordinary humans” (humans 1.0, if you like), via smart humans or trans humans, into super humans or post humans?

These are the questions which have motivated me to write this book. You can read a longer introduction here.

I’m currently circulating copies of the first twenty chapters for pre-publication review. The chapters available are listed here, with links to the opening paragraphs in each case, and there’s a detailed table of contents here.

As described in the “Downloads” page of the book’s website, please let me know if there are any chapters you’d particularly like to review.

Blog at WordPress.com.