21 May 2015

Anticipating 2040: The triple A, triple h+ vision

Abundance Access Action

The following vision arises from discussions with colleagues in the Transhumanist Party.


Abundance – sustainable abundance – is just around the corner – provided we humans collectively get our act together.

We have within our grasp a sustainable abundance of renewable energy, material goods, health, longevity, intelligence, creativity, freedom, and positive experience.

This can be attained within one human generation, by wisely accelerating the green technology revolution – including stem cell therapies, 3D printing, prosthetics, robotics, nanotechnology, genetic engineering, synthetic biology, neuro-enhancement, artificial intelligence, and supercomputing.


The rich fruits of technology – abundance – can and should be provided for all, not just for those who manage to rise to the top of the present-day social struggle.

A bold reorganisation of society can and should take place in parallel with the green technology revolution – so that everyone can freely access the education, healthcare, and everything else needed to flourish as a full member of society.


TPUK_LOGO1_400pxTo channel the energies of industry, business, finance, universities, and the media, for a richly positive outcome within the next generation, swift action is needed:

  • Widespread education on the opportunities – and risks – of new technology
  • Regulations and checks to counter short-termist action by incumbent vested interests
  • The celebration and enablement of proactive innovation for the common good
  • The promotion of scientific, rational, evidence-based methods for taking decisions, rather than ideologies
  • Transformation of our democracy so that governance benefits from the wisdom of all of society, and serves the genuine needs of everyone, rather than perpetuating the existing establishment.

Transhumanism 2040

2040Within one generation – 25 years, that is, by 2040 – human society can and should be radically transformed.

This next step of conscious evolution is called transhumanism. Transhumanists see, and welcome, the opportunity to intelligently redesign humanity, drawing wisely on the best resources of existing humanity.

The transhumanist party is the party of abundance, access, and action. It is the party with a programme to transcend (overcome) our ingrained human limitations – limitations of animal biology, primate psychology, antiquated philosophy, and 20th century social structures.

Transhumanism 2020

2020As education spreads about the potential for a transhumanist future of abundance, access, and action – and as tangible transhumanist projects are seen to be having an increasingly positive political impact – more and more people will start to identify themselves as transhumanists.

This growing movement will have consequences around the world. For example, in the general election in 2020 in the UK, there may well be, in every constituency, either a candidate from the Transhumanist Party, or a candidate from one of the other parties who openly and proudly identifies as a transhumanist.

The political landscape will never be the same again.

Call to action

To offer support to the Transhumanist Party in the UK (regardless of where you are based in the world), you can join the party by clicking the following PayPal button:

Join now

Membership costs £25 per annum. Members will be invited to participate in internal party discussions of our roadmap.

For information about the Transhumanist Party in other parts of the world, see http://transhumanistpartyglobal.org/.

For a worldwide transhumanist network without an overt political angle, consider joining Humanity+.

To discuss the politics of the future, without any exclusive link to the Transhumanist Party, consider participating in one of the Transpolitica projects – for example, the project to publish the book “Politics 2.0”.

Anticipating the Transhumanist Party roadmap to 2040

Footnote: Look out for more news of a conference to be held in London during Autumn (*), entitled “Anticipating 2040: The Transhumanist Party roadmap”, featuring speakers, debates, open plenaries, and closed party sessions.

If anyone would like to speak at this event, please get in touch.

Anticipating 2040
(*) Possible date is 3-4 October 2015, though planning is presently at a preliminary stage.


27 February 2010

Achieving a 130-fold improvement in 40 years

Filed under: books, Economics, green, Kurzweil, RSA, solar energy, sustainability — David Wood @ 3:23 pm

One reason I like London so much is the quality of debate and discussion that takes place, at least three times most weeks, at the RSA.

The full name of this organisation is “the Royal Society for the encouragement of Arts, Manufactures and Commerce“.  It’s been holding meetings since 1754.  Early participants included Benjamin Franklin, Samuel Johnson, and Richard Arkwright.

Recently, there have been several RSA meetings addressing the need for significant reform of how the global economy operates.  Otherwise, these speakers imply, the future will be much bleaker than the present.

On Wednesday, Professor Tim Jackson of the University of Surrey led a debate on the question “Is Prosperity Without Growth Possible?”  Professor Jackson recently authored the book “Prosperity Without Growth: Economics for a Finite Planet“.  The book contains an extended version of his remarks at the debate.

I find myself in agreement a great deal of what the book says:

  • Continuous economic growth is a shallow and, by itself, dangerous goal;
  • Beyond an initial level, greater wealth has only a weak correlation with greater prosperity;
  • Greater affluence can bring malaise – especially in countries with significant internal inequalities;
  • Consumers frequently find themselves spending money they don’t have, to buy new goods they don’t really need;
  • The recent economic crisis provides us with an important opportunity to reflect on the operation of economics;
  • “Business as usual” is not a sustainable answer;
  • There is an imperative to consider whether society can operate without its existing commitment to regular GDP growth.

What makes this book stand out is its recognition of the enormous practical problems in stopping growth.  Both growth and de-growth face significant perils.  As the start of chapter 12 of the book states:

Society is faced with a profound dilemma.  To resist growth is to risk economic and social collapse.  To pursue it relentlessly is to endanger the ecosystems on which we depend for long-term survival.

For the most part, this dilemma goes unrecognised in mainstream policy…  When reality begins to impinge on the collective consciousness, the best suggestion to hand is that we can somehow ‘decouple‘ growth from its material impacts…

The sheer scale of this task is rarely acknowledged.  In a world of 9 billion people all aspiring to western lifestyles, the carbon intensity of every dollar of output must be at least 130 times lower in 2050 than it it today…

Never mind that no-one knows what such an economy looks like.  Never mind that decoupling isn’t happening on anything like that scale.  Never mind that all our institutions and incentive structures continually point in the wrong direction.  The dilemma, once recognised, looms so dangerously over our future that we are desperate to believe in miracles.  Technology will save us.  Capitalism is good at technology…

This delusional strategy has reached its limits.  Simplistic assumptions that capitalism’s propensity for efficiency will stabilise the climate and solve the problem of resource scarcity are almost literally bankrupt.  We now stand in urgent need of a clearer vision, braver policy-making, something more robust in the way of a strategy with which to confront the dilemma of growth.

The starting point must be to unravel the forces that keep us in damaging denial.  Nature and structure conspire together here.  The profit motive stimulates a continual search for newer, better or cheaper products and services.  Our own relentless search for novelty and social status locks us into an iron cage of consumerism.  Affluence itself has betrayed us.

Affluence breeds – and indeed relies on – the continual production and reproduction of consumer novelty.  But relentless novelty reinforces anxiety and weakens our ability to protect long-term social goals.  In doing so it ends up undermining our own well-being and the well-being of those around us.  Somewhere along the way, we lose the shared prosperity we sought int he first place.

None of this is inevitable.  We can’t change ecological limits.  We can’t alter human nature.  But we can and do create and recreate the social world. Its norms are our norms.  Its visions are our visions.  Its structures and institutions shape and are shaped by those norms and visions.  This is where transformation is needed…

As I said, I find myself in agreement a great deal of what the book says.  The questions raised in the book deserve a wide hearing.  Society needs higher overarching goals than merely increasing our GDP.  Society needs to focus on new priorities, which take into account the finite nature of the resources available to us, and the risks of imminent additional ecological and economic disaster.

However, I confess to being one of the people who believe (with some caveats…) that “technology will save us“.  Let’s look again at this figure of a 130-fold descrease needed, between now and 2050.

The figure of 130 comes from a calculation in chapter 5 of the book.  I have no quibble with the figure.  It comes from the Paul Ehrlich equation

I = P * A * T


  • I is the impact on the environment resulting from consumption
  • P is the population
  • A is the consumption or income level per capita (affluence)
  • T is the technological intensity of economic output.

Jackson’s book considers various scenarios.  Scenario 4 assumes a global population of 9 billion by 2050, all enjoying a lifestyle equivalent to that of the average EU citizen, which has grown by the modest amount of only 2% per annum over the intervening 40 years.  To bring down today’s I level for carbon intensity of economic level, to that seen by the IPCC as required to avoid catastrophic climate change, will require a 130-fold reduction in T in the meantime.

How feasible is an improvement factor of 130 in technology, over the next 40 years?  How good is the track record of technology at solving this kind of problem?

Some of the other speakers at the RSA event were hesitant to make any predictions for a 40 year time period.  They noted that history has a habit of making this kind of prediction irrelevant.  Jackson’s answer is that since we have little confidence of making a significant change in T, we should look to ways to reduce A.  Jackson is also worried that recent talk of a ‘Green New Deal’:

  • Is still couched in language of economic growth, rather than improvement in prosperity;
  • Has seen little translation into action, since first raised during 2008-9.

My own answer is that 130 represents just over 7 doublings (2 raised to the 7th power is 128) and that at least some parts of technology have no problems in improving by seven doubling generations over 40 years.  Indeed, taking two years as the usual Moore’s Law doubling period, for improvements in semiconductor density, would require only 14 years for this kind of improvement, rather than 40.

To consider how Moore’s Law improvements could transform the energy business, radically reducing its carbon intensity, here are some remarks by futurist Ray Kurzweil, as reported by LiveScience Senior Editor Robin Lloyd:

Futurist and inventor Ray Kurzweil is part of distinguished panel of engineers that says solar power will scale up to produce all the energy needs of Earth’s people in 20 years.

There is 10,000 times more sunlight than we need to meet 100 percent of our energy needs, he says, and the technology needed for collecting and storing it is about to emerge as the field of solar energy is going to advance exponentially in accordance with Kurzweil’s Law of Accelerating Returns. That law yields a doubling of price performance in information technologies every year.

Kurzweil, author of “The Singularity Is Near” and “The Age of Intelligent Machines,” worked on the solar energy solution with Google Co-Founder Larry Page as part of a panel of experts convened by the National Association of Engineers to address the 14 “grand challenges of the 21st century,” including making solar energy more economical. The panel’s findings were announced here last week at the annual meeting of the American Association for the Advancement of Science.

Solar and wind power currently supply about 1 percent of the world’s energy needs, Kurzweil said, but advances in technology are about to expand with the introduction of nano-engineered materials for solar panels, making them far more efficient, lighter and easier to install. Google has invested substantially in companies pioneering these approaches.

Regardless of any one technology, members of the panel are “confident that we are not that far away from a tipping point where energy from solar will be [economically] competitive with fossil fuels,” Kurzweil said, adding that it could happen within five years.

The reason why solar energy technologies will advance exponentially, Kurzweil said, is because it is an “information technology” (one for which we can measure the information content), and thereby subject to the Law of Accelerating Returns.

“We also see an exponential progression in the use of solar energy,” he said. “It is doubling now every two years. Doubling every two years means multiplying by 1,000 in 20 years. At that rate we’ll meet 100 percent of our energy needs in 20 years.”

Other technologies that will help are solar concentrators made of parabolic mirrors that focus very large areas of sunlight onto a small collector or a small efficient steam turbine. The energy can be stored using nano-engineered fuel cells, Kurzweil said.

“You could, for example, create hydrogen or hydrogen-based fuels from the energy produced by solar panels and then use that to create fuel for fuel cells”, he said. “There are already nano-engineered fuel cells, microscopic in size, that can be scaled up to store huge quantities of energy”, he said…

To be clear, I don’t see any of this as inevitable.  The economy as a whole could falter again, jeopardising “Kurzweil’s Law of Accelerating Returns”.  Less dramatically, Moore’s Law could run out of steam, or it might prove harder than expected to apply silicon improvements in systems for generating, storing, and transporting energy.  I therefore share Professor Jackson’s warning that capitalism, by itself, cannot be trusted to get the best out of technology.  That’s why this debate is particularly important.

17 January 2010

Embracing engineering for the whole earth

Filed under: books, climate change, Genetic Engineering, geoengineering, green, Nuclear energy — David Wood @ 2:14 am

One thing I’m trying to do with my blog is to provide useful pointers, into the vast amount of material that’s available both online and offline, to the small small fraction of that material which does the best job of summarising, extending, and challenging current thinking.

Whole Earth Discipline: an ecopragmatist manifesto“, the recent book by veteran ecologist and environmentalist Stewart Brand, comprehensively fits that criterion.  It is so full of insight that virtually every page contains not just one but several blogworthy quotes, ideas, facts, putdowns, and/or refutations.  It’s that good.  I could write a book-length blogpost signing its praises.

Brand turned 70 while writing this book.  In the book, he indicates that he has changed his mind as he grew older.  The book serves as a landmark for various changes of mind for the environmental movement as a whole.  The argument is sustained, easy-to-read, detailed, and compelling.

The core argument is that the future well-being of the whole planet – human societies embedded in biological ecosystems – requires a thoroughgoing embrace of an engineering mindset.  Specifically, the environmental movement needs to recognise:

  • That the process of urbanisation – the growth of cities, even in apparently haphazard ways – provides good solutions to many worries about over-population;
  • That nuclear energy will play a large role in providing clean, safe, low-carbon energy;
  • That GE (genetic engineering) will play a large role in providing safe, healthy, nutritious food and medicine;
  • That the emerging field of synthetic biology can usefully and safely build upon what’s already being accomplished by GE;
  • That methods of geoengineering will almost certainly play a part in heading off the world’s pending climate change catastrophe.

The book has an objective and compassionate tone throughout.  At times it squarely accuses various environmentalists of severe mistakes – particularly in aspects of their opposition to GE and nuclear energy – mistakes that have had tragic consequences for developing societies around the world.  It’s hard to deny the charges.  I sincerely hope that the book will receive a wide readership, and will cause people to change their minds.

The book doesn’t just provide advocacy for some specific technologies.  More than that, it makes the case for changes in mindset:

  • It highlights major limitations to the old green mantra that “small is beautiful”;
  • It unpicks various romantic notions about the lifestyles and philosophies of native peoples (such as the American Indians);
  • It shows the deep weakness of the “precautionary principle”, and proposes an own alternative approach;
  • It emphasises how objections to people “playing God” are profoundly misguided.

Indeed, the book starts with the quote:

We are as gods and HAVE to get good at it.

It concludes with the following summary:

Ecological balance is too important for sentiment.  It requires science.

The health of the natural infrastructure is too compromised for passivity.  It requires engineering.

What we call natural and what we call human are inseparable.  We live one life.

And what is an engineer?  Brand states:

Romantics love problems; scientists discover and analyze problems; engineers solve problems.

As I read this book, I couldn’t help comparing it to “The constant economy” by Zac Goldsmith, which I read a few weeks ago.  The two books share many concerns about the unsustainable lifestyles presently being practiced around the world.  There are a few solutions in common, too.  But the wide distrust of technology shown by Goldsmith is amply parried by the material that Brand marshalls.  And the full set of solutions proposed by Brand are much more credible than those proposed by Goldsmith.  Goldsmith has been a major advisor to the UK Conservative Party on environmental matters.  If any UK party could convince me that they thoroughly understand, and intend to implement, the proposal in Brand’s book, I would be deeply impressed.

Note: an annotated reference companion to the book is available online, at www.sbnotes.com.  It bristles with useful links.  There’s also a 16 minute TED video, “Stewart Brand proclaims 4 environmental ‘heresies’“, which is well worth viewing.

Thanks to Marc Gunther, whose blogpost “Why Stewart Brand’s new book is a must-read” alerted me to this book.

By a fortunate coincidence, Brand will be speaking at the RSA in London on Tuesday.  I’m anticipating a good debate from the audience.  An audio feed from the meeting will be broadcast live.

31 December 2009

The constant economy

Filed under: books, Economics, green, leadership, market failure, vision — David Wood @ 2:54 pm

I’ve had mixed thoughts when reading Zac Goldsmith‘s “The constant economy: how to create a stable society” over the last few days.  It makes some useful contributions to an ultra-important debate.  However, the recommendations it makes frequently strike me as impractical.

Zac has been one of the advisors to the UK Conserative Party on environmental matters.  He is now the Conservative prospective parliamentary candidate for the Richmond Park constituency, which is adjacent to the one I live in.  It’s possible that his views on environmental matters will have a significant influence over the next UK government.

Some of the examples in the book made me think, “Gosh, I didn’t realise things were so bad; things can’t be left to go on like this“.  I had these thoughts when reading, for example, about the huge decline in fishing stocks worldwide, and about the enormous swathe of plastic waste in large parts of the Pacific Ocean.

Other parts, however, made me think, “Hang on, there’s another side to this story” – for example, for some of the incidents described in the chapter about the Precautionary Principle, and for the section about nuclear power.

This book is like a manifesto.  Mixed in with real-world anecdotes and analysis, each chapter contains a list of “Voter Demand Box” items.  For example, here’s the list from the chapter on “A zero waste economy”:

‘Take back’

People should have a legal ‘take back’ right enshrined in consumer law.  This would give everyone the right to take any packaging waste back to the shop it was bought from, and impose an obligation on retailers to recycle that waste once it was received.

Paying people to recycle

No more landfill

Using the right materials

Built to last

Government buying power

Incineration, a last resort

And from the chapter “An energy revolution”:

Find out the truth about oil

A cross-party taskforce should be established immediately to draw up a risk assessment.  It should not invite the traditional fuel industry to take part, as it would effectively be studying a risk scenario that says their maths is incorrect.  The taskforce should be required to publically report its findings within a year.

At the same time, we should also expect our government to put pressure on the UN or International Energy Authority to undertake a review of the world’s oil reserves.  If the economic models of every nation on earth are based on the assumption of everlasting oil supplies, it is reasonable that they should know how much oil actually exists.

Capture the heat

Reward the pioneers

Break the rules


We urgently need a renewable energy fund to provide substantial grants for the research and development of radical new clean energy technologies.  From wave power to clean coal technology, potential solutions remain in the pipeline due to a lack of investment.  Government should provide that investment.  Diverting money that would otherwise be spent subsidizing fossil fuels or the nuclear energy could provide billions of pounds for research, support and, crucially, for upgrading the national grid.

Stop paying the polluters

Whilst there are elements of good sense to all (or nearly all) of these recommendations, this set of items needs a lot more work:

  • The items are uncosted, and generally open-ended;
  • It’s often unclear how the recommendations differ from policies and processes that are already in place;
  • There’s no prioritisation (everything is equally important);
  • There’s no roadmap (everything is equally urgent).

Despite this weakness, this book still has merit as a good conversation starter.

The book’s introduction provides a higher-level picture.  Here’s the opening paragraph:

The world is in trouble.  As human numbers expand and the resource-hungry economy grows, the natural environment is suffering an unprecedented assault.  Forests are shrinking, species are disappearing, oceans are emptying, land is turning to desert.  The climate itself is being thrown out of balance.  In just a few generations, we have created the biggest threat to the natural world since humanity evolved.  Unless something radical is done now, the world in which our children grow up will be less beautiful, less bountiful, more polluted and more uncertain than ever before.

The top-level recommendations in the book are, in effect:

1.) The need for first-class political leadership on environmental issues

We need political leaders who can free themselves from the constraints of pressure groups, whose vision extends far beyond the next election, and who can motivate strong constructive action (rather than just words):

Politicians in Britain, as elsewhere, can see the rising tide of concern over green issues, and in many cases know what solutions are required.  The environment has never been so high on the political agenda…

Yet few politicians are prepared to take the action needed.  Nothing happens.  Time ticks by, the situation becomes more urgent – and government does nothing.  Why?

Politicians are terrified of acting because they believe that tackling the looming crisis will involve restricting the electorates choices.  They believe that saving the planet means destroying the economy, and that neither business nor voters will stand for it.  They fear the headlines of a hostile media.  They fear, ultimately, for their jobs.  It always seems easier to do nothing – and to let the situation drift and hope that someone else takes the risk…

2.) The need to adapt market economics to properly respect environmental costs

Our defining challenge is to marry the environment with the market.  In other words, we need to reform those elements of our economy that encourage us to damage, rather than nurture, the natural environment.

The great strength of the market is its unique ability to meet the economic needs of citizens.  Its weakness is that it is blind to the value of the environment…

Other than nature itself, the market is also the most powerful force for change that we have.  The challenge we fact is to find ways to price the environment into our accounting system: to do business as if the earth mattered, and to make it matter not just as a moral choice but as a commercial imperative

Note: this is hardly a new message.  For one, Jonathon Porritt covered similar ground in his 2005 book (with a new edition in 2007), “Capitalism as if the world matters“.  However, Zac has a significantly simpler writing style, so his ideas may reach a wider audience – whereas I confess I twice got bogged down in the early stages of Jonathon’s book, and set it aside without reading further.

3.) The need for better use of market-based instruments such as taxation

We need to change the boundaries within which the market functions, by using well-targeted regulation.

Taxation is the best mechanism for pricing pollution and the use of scarce resources.  If tax shifts emphasis from good things like employment to bad things like pollution, companies will necessarily begin designing waste and pollution out of the way they operate…

The other major tool in the policymakers’ kit is trading.  Carbon emissions trading is a good example of a market-based approach which attaches a value to carbon emissions and ensures that buyers and sellers are exposed to this price.  As long as the price is high enough to influence decisions, it can work…

Note: it’s clear that the existing carbon trading scheme has lots of problems (as Zac describes, later in the book).  That’s a reason to push on quickly to a more effective replacement.

There’s also a latent worry over Zac’s confident recommendation:

It’s crucial that wherever money is raised on the back of taxing ‘bad’ activities is used to subsidise desirable activities.  For example, if a new tax is imposed on the dirtiest cars, it needs to be matched, pound for pound, on reductions in the price of the cleanest cars.

The complication is that once the higher taxation drives down usage of (in this example) the dirtiest cars, the amount of tax earned by the government will be reduced, and the “pound for pound” balance will break.  It’s another example of how the ideas in the book lack detailed financial planning.  Presumably Zac intends these details to be provided at a later stage.

4.) We need a fresh approach to regulation

Direct controls force polluting industries to improve their performance, and can eliminate products or practices that are particularly hazardous…  Markets without regulation would not have delivered unleaded petrol, for instance, or catalytic converters.  Without regulations requiring smokeless fuel, London’s smogs would still be with us.

This approach, however, needs to be effective.  With some products and processes, the regulatory bar needs to be raised internationally to avoid companies chasing the lowest standards globally.  We also need a change in our regulatory approach, away from an obsessive policing of processes towards a focus on outcomes.  If the regulatory system is too prescriptive, there is no room for innovation, and no real prospect of higher environmental standards…

5.) We need to measure what matters

Almost every nation on earth uses gross domestic product (GDP) to measure its economic growth.  The trouble is, expressed as a monetary value, GDP simply measures economic transactions, indiscrimately.  It cannot tell the difference between useful transactions and damaging ones…

Chopping down a rainforest and turning it into toilet paper increases GDP.  If crime escalates, the resulting investments in prisons and private security will add to GDP and be measured as ‘growth’.  When the Exxon Valdez oil tanker ran aground and spilt its vast load of oil on the pristine Alaskan shoreline, US GDP actually soared as legal work, media coverage and clean-up costs were all added to the national accounts…

US Senator Robert Kennedy said something similar:  “GDP does not allow for the health of our children, the quality of their education, or the joy of their play”, he said.  “It does not include the beauty of our poetry or the strength of our marriages, the intelligence of our public debate or the integrity of our public officials.  It measures neither our wit nor our courage, neither our wisdom nor our learning, neither our compassion nor our devotion to our country; it measures everything, in short, except that which makes life worthwhile.”

But the pursuit of economic growth, as measured by GDP, has been the overriding policy for decades, with the effect that the consequences have often been perverse…

A number of organisations have tried to assemble a new tool for measuring progress.  But the result is invariably a toolkit that is monstrous in its complexity and too impractical for any government to use.  A neater approach would be for the government to establish a wholly independent Progress Commission, staffed by experts from a wide variety of fields: economists, environmentalists, statisticians, academics, etc…

Whichever indicators are selected, the results would be handed each year to Parliament and the media.  The government would be required to respond…

Note: again, the suggested practical follow-up seems weaker than the analysis of the problem itself.  The economy has been ultra-optimised to pursue growth in GDP.  That’s how businesses are set up.  That’s going to prove very difficult to change.  Attention to non-financial matters is very likely to be squeezed.

However, it’s surely good to have the underlying problem highlighted once again.  Robert Kennedy’s stirring words ring as clearly today, as when they were first spoken: March 1968.

Let’s keep these words in mind, until we are confident that society is set up to pursue what matters, rather than simply to boost GDP.

Further reading: The book has its own website, with a blog attached.

24 December 2009

Predictions for the decade ahead

Before highlighting some likely key trends for the decade ahead – the 2010’s – let’s pause a moment to review some of the most important developments of the last ten years.

  • Technologically, the 00’s were characterised by huge steps forwards with social computing (“web 2.0”) and with mobile computing (smartphones and more);
  • Geopolitically, the biggest news has been the ascent of China to becoming the world’s #2 superpower;
  • Socioeconomically, the world is reaching a deeper realisation that current patterns of consumption cannot be sustained (without major changes), and that the foundations of free-market economics are more fragile than was previously widely thought to be the case;
  • Culturally and ideologically, the threat of militant Jihad, potentially linked to dreadful weaponry, has given the world plenty to think about.

Looking ahead, the 10’s will very probably see the following major developments:

  • Nanotechnology will progress in leaps and bounds, enabling increasingly systematic control, assembling, and reprogamming of matter at the molecular level;
  • In parallel, AI (artificial intelligence) will rapidly become smarter and more pervasive, and will be manifest in increasingly intelligent robots, electronic guides, search assistants, navigators, drivers, negotiators, translators, and so on.

We can say, therefore, that the 2010’s will be the decade of nanotechnology and AI.

We’ll see the following applications of nanotechnology and AI:

  • Energy harvesting, storage, and distribution (including via smart grids) will be revolutionised;
  • Reliance on existing means of oil production will diminish, being replaced by greener energy sources, such as next-generation solar power;
  • Synthetic biology will become increasingly commonplace – newly designed living cells and organisms that have been crafted to address human, social, and environmental need;
  • Medicine will provide more and more new forms of treatment, that are less invasive and more comprehensive than before, using compounds closely tailored to the specific biological needs of individual patients;
  • Software-as-a-service, provided via next-generation cloud computing, will become more and more powerful;
  • Experience of virtual worlds – for the purposes of commerce, education, entertainment, and self-realisation – will become extraordinarily rich and stimulating;
  • Individuals who can make wise use of these technological developments will end up significantly cognitively enhanced.

In the world of politics, we’ll see more leaders who combine toughness with openness and a collaborative spirit.  The awkward international institutions from the 00’s will either reform themselves, or will be superseded and surpassed by newer, more informal, more robust and effective institutions, that draw a lot of inspiration from emerging best practice in open source and social networking.

But perhaps the most important change is one I haven’t mentioned yet.  It’s a growing change of attitude, towards the question of the role in technology in enabling fuller human potential.

Instead of people decrying “technical fixes” and “loss of nature”, we’ll increasingly hear widespread praise for what can be accomplished by thoughtful development and deployment of technology.  As technology is seen to be able to provide unprecedented levels of health, vitality, creativity, longevity, autonomy, and all-round experience, society will demand a reprioritisation of resource allocation.  Previous sacrosanct cultural norms will fall under intense scrutiny, and many age-old beliefs and practices will fade away.  Young and old alike will move to embrace these more positive and constructive attitudes towards technology, human progress, and a radical reconsideration of how human potential can be fulfilled.

By the way, there’s a name for this mental attitude.  It’s “transhumanism”, often abbreviated H+.

My conclusion, therefore, is that the 2010’s will be the decade of nanotechnology, AI, and H+.

As for the question of which countries (or regions) will play the role of superpowers in 2020: it’s too early to say.

Footnote: Of course, there are major possible risks from the deployment of nanotechnology and AI, as well as major possible benefits.  Discussion of how to realise the benefits without falling foul of the risks will be a major feature of public discourse in the decade ahead.

29 November 2009

The single biggest problem

Filed under: green, solar energy, UKH+, vision — David Wood @ 2:35 pm

Petra Söderling, my good friend and former colleague on the Symbian Foundation launch team, raises some important questions in a blogpost yesterday, Transhumans H+.  Petra remarked on the fact that I had included the text “UKH+ meetings secretary” on my new business card.  A TV program she watched recently had reminded her of the topic of transhumanism (often abbreviated to H+ or h+) – prompting her blogpost:

…I haven’t changed my mind, David. I still think this is not pressingly important or urgent. In my view, the single biggest problem we have at hand is that people are breeding like rabbits, and the planet cannot feed us all. Us rich westerners consume so much natural resources that just supporting our lifestyle would be a burden. But, we are not only idiots in our own consumption manners, we are idiots in showing the rest of the world that this is the preferred lifestyle. Our example leads to billions of people in developing and underdeveloped countries pursuing our way of living. This is done by unprecedented exploitation of resources everywhere.

We’re in a process of eating our home planet away, and helping the richest of us to live healthier and longer is no solution. What’s the point of living 150 years if you’re breathing manufactured air, all migrated to north and south poles from desert lands, and eating tomatos that are clone of a clone of a clone of a clone of a clone? As rich and clever as we are, I think we should solve first things first…

The mention of “first things first” and “single biggest problem” is music to my ears.  I’m currently engaged on a personal research program to try to clarify what, for me, should be the “first things” that deserve my own personal focus.  Having devoted the last 21 years of my work life to mobile software, particularly for smartphones, I’m now looking to determine where I should apply my skills and resources for the next phase of my professional life.

I completely agree with Petra that the current “western consumer lifestyle” is not sustainable.  As more and more people throughout the developing world adopt similar lifestyles, consuming more and more resources, the impact on our planet is becoming collosal.  It’s a very high priority to address this lack of sustainability.

But is the number of people on the planet – our population – the most important leverage point, to address this lack of sustainability?  There are at least four factors to consider:

  1. World population
  2. The resource consumption of the average person on the planet
  3. The outcome of processes for creating resources
  4. Side-effects of processes for creating resources.

Briefly, we are in big trouble if (1.)x(2.) exceeds (3.), and/or if the side-effects (4.) are problematic in their own right.

My view is that the biggest leverage will come from addressing factors (3.) and (4.), rather than (1.) and (2.).

For example, huge amounts of energy from the sun are hitting the earth the whole time.  To quote from chapter 25 of David MacKay’s first-class book “Sustainable energy without the hot air“,

…the correct statement about power from the Sahara is that today’s [global energy] consumption could be provided by a 1000 km by 1000 km square in the desert, completely filled with concentrating solar power. That’s four times the area of the UK. And if we are interested in living in an equitable world, we should presumably aim to supply more than today’s consumption. To supply every person in the world with an average European’s power consumption (125 kWh/d), the area required would be two 1000 km by 1000 km squares in the desert…

In parallel with thoughtfully investigating this kind massive-scale solar energy harvesting, it also makes sense to thoughtfully investigate massive-scale CO2 removal from the atmosphere (the topic of a blogpost I plan to write shortly) as well as other geo-engineering initiatives.  In line with the transhumanist philoosophy I espouse, I’m keen to

support and encourage the thoughtful development and application of technology to significantly enhance human mental and physical capabilities – with profound possible consequences on both personal and global scales

There are, of course, large challenges facing attempts to create massive-scale solar energy harvesting and massive-scale CO2 removal from the atmosphere.  These challenges span technology, politics, economics, and, dare I say it, philosophy.

In a previous posting, The trend beyond green, I”ve spelt out some desired changes in mindset that I see as required, on a global scale:

  • rather than decrying technology as “just a technical fix”, we must be willing to embrace the new resources and opportunities that these technologies make available;
  • rather than seeking to somehow reverse human lifestyle and aspiration to that of a “simpler” time, we must recognise and support the deep and valid interests in human enhancements;
  • rather than thinking of death and decay as something that gives meaning to life, we must recognise that life reaches its fullest meaning and value in the absence of these scourges;
  • rather than seeing the status quo as somehow the pinnacle of existence, we must recognise the deep drawbacks in current society and philosophies, and be prepared to move forwards;
  • rather than seeing “natural” as somehow akin to “the best imaginable”, we must be prepared to engineer solutions that are “better than natural”;
  • rather than seeking to limit expectations, with comments such as “this kind of enhancements might become possible in 100-200 years time”, we should recognise the profound possible synergies arising from the interplay of technologies that are individually accelerating and whose compound impact can be much larger.

Helping to accelerate these changes in mindset is one of the big challenges I’d like to adopt, in the next phase of my professional life.

Whatever course society adopts, to address our sustainability crisis, there will need to be some very substantial changes.  People embrace change much more willingly, if they see upside as well as downside in the change.  The H+ vision of the future I see is one of abundance (generated by the super-technology of the near future) along with societal harmony (peaceful coexistence) and ample opportunities for new growth and exploration.

To return in closing to the question raised earlier: what is the “single biggest problem” that most deserves our collective attention?  Is it population growth and demographics, global warming, shortage of energy, the critical instability of the world economic order, the potential for a new global pandemic, nuclear terrorism, or some other global existential risk?

In a way, the answer is “none of the above”.  Rather, the single biggest problem is that, globally, we are unable to collaborate sufficiently deeply and productively to develop and deploy solutions to the above issues.  This is a second-level problem.  The economic, political, and philosophical structures we have inherited from the past have very many positive aspects, but many drawbacks as well – drawbacks that are becoming ever more pressing as we see accelerating change in technology, resource usage, and communications.

19 November 2009

ELF09: energy, sustainability, and more

Filed under: Economics, Energy, green, solar energy — David Wood @ 3:12 am

On Tuesday I attended the ninth Business Week “European Leadership Forum”, also known by its Twitter hash tag #elf09Business Week are to be congratulated for bringing together a fascinating group of industry leaders.

Here are a few of the points from the course of the day that made me think.

The threat of a new economic crisis

Professor Urs Muller, Managing Director and Chief Economist at BAK Basel Economics, had some worrying thoughts about the state of the global economy:

The good news is that the economic crisis is over.  The bad news is that the conditions responsible for the crisis are still intact, and the next crisis is already brewing.

Like various other speakers and panellists, Professor Muller was concerned about the state of regulation of banking activities.  As we discussed afterwards: “Who would be a regulator?”

It’s hard to identify and agree which elements of banking need new regulation regimes, and which don’t.  However, action by one country alone (for example, by the UK) would fail, since it would merely drive key lines of business elsewhere.  Coordination is needed – but hard!

I asked, how much time do we have?  Do governments have around ten years to reach agreement and take action, or are things more urgent?  Professor Muller replied that if matters were not resolved during 2010, it might already be too late.  Unfortunately, the side effect of the current crisis appearing to be over, is that government attention is liable to diminish.  Everyone is breathing a sigh of relief, prematurely.

This ominous discussion reminded me of remarks made by eminent economist and FT columnist John Kay a few days earlier, at a lunchtime meeting at the RSA, “Banking in the Wake of the Crisis: how will confidence be restored?”  That meeting addressed the questions:

  • Have banks and bankers have really learned the lessons of the crisis?
  • Are we in danger of falling into a dangerous cycle once more?

John Kay gave the answers No and Yes.

On a more positive note, Professor Muller highlighted the FSB (Financial Stability Board) as a cross-border organisation with a strong potential to address banking system vulnerabilities and to develop and implement strong regulatory, supervisory and other policies in the interest of financial stability.  John Kay’s recommendations – in favour of what is called “Narrow banking” – are contained in a 95-page PDF “The Reform of Banking Regulation” available from his website.

In search of the European Bill Gates

Earlier in the day, INSEAD Professor Soumitra Dutta and serial technology entrepreneur Niklas Zennström led a discussion “INNOVATION – What is the next generation? The next wave?”

Questions posed included why there was no real equivalent, in Europe, to Bill Gates, and which field of technology is likely to prove the most important in the near-term future.

I liked the answer given by Professor Dutta:

The next big wave of hitech innovation is improving the quality of life – including both improving the environment, and improving healthcare.

However, these technologies should not be viewed as alternatives to ICT (Information and Communications Technology).  Instead, these technology areas will succeed by implementing the next wave of ICT.  But instead of just experiencing “the Internet of websites”, we will see “the Internet of things”.

Alternatives to dependency on growth

Running near the surface of much of the discussion during the day was the theme of growth and sustainability.

Opening keynote speaker Stephen Green, Group Chairman of HSBC Holdings Plc, put it as follows:

The biggest change arising from the economic crisis is that companies must stop focussing on short-term value maximisation, and should instead focus on sustainable value maximisation.

Later, from the floor, Professor Dutta posed the simple question,

Is growth good?

I didn’t hear a satisfactory answer.  I did hear the answer that “business needs growth”, but that just skirts the issue.

Interestingly, Mikhail Gorbachev addressed the same issue in his keynote address at the General Assembly conference of the Club of Rome on 26 October 2009, in Amsterdam.  Here’s an extract:

A low-carbon economy is only a part of this new economic model we need so badly today. The model that has been around for the past five decades should be replaced. Of course, it cannot be achieved overnight, but I think we can already discuss reference points and general contours of this new model.

It means, above all, the overcoming of the economy’s ‘addiction’ to super-profits and hyper-consumption, which is not possible unless societies reshape their values. It means shifting of the increasingly larger swaths of the economy to production of ‘social goods’, among which the sustainable environment takes a centre stage.

These social goods also include human health in the broad sense of the word, education, culture, equal opportunities, and social unity, including the elimination of the glaring gaps between the rich and the poor.

Society needs all this not only because ethical imperatives dictate it. The economic benefits to be brought by these “goods” are enormous. However, economists are yet to learn how to measure them. An intellectual breakthrough is needed here. A new model of economy can not be built without it.

Energy and sustainability

The #elf09 gathering split up during the afternoon into a series of six parallel discussions.  Along with around 40 other people, I took part in a roundtable discussion on “Energy and sustainability”.

The discussion was led by Mark Williams, Downstream Director of Royal Dutch Shell, and Sophia Tickell, Executive Director of SustainAbility.

Mark Williams made the following points (I apologise in advance for condensing a much richer set of messages):

  • Almost certainly, the total energy needs of the world will double by 2050;
  • It seems highly unlikely that this vast energy requirement can be met by non-fossil fuels;
  • We need to prepare for a scenario in which at least 70% of the world’s energy needs in 2050 will still be met by fossil fuels;
  • In other words, “we have to come to grips with carbon”;
  • Even as we continue to rely on fossil fuels, we have to “decarbonise” the system;
  • There’s no reasonable alternative to developing and deploying technology for widespread CCS (Carbon Capture and Storage);
  • It’s already possible to store CO2 underground, safely, “for geological amounts of time”;
  • It’s true that there is public concern over the prospect of leaks of stored CO2, and over failures in warning systems to detect leaks, but “governments will have to take the lead in public education”.

Timescales to adopt new sources of energy

Mark Williams made the point that, so far, it has taken any new source of energy at least 25 years to achieve 1% of global energy delivery.  That point should be kept in mind, to avoid anyone becoming “too optimistic about new energy sources”.

In response, people around the table asked:

  • Would the equivalent of a war-time situation provide a different kind of reaction from both markets and governments?  Do we have to accept that we’ll have the same mindsets as before?

Mark answered:

  • Don’t underestimate “the tyranny of the installed base”;
  • Alternative energy sources have to face very significant issues with storage and transport: “electricity is not easily stored”.

I tried a different tack:

  • Consider the fact that, 25 years ago, there were virtually no mobile phones in use.  Over that timescale, enormous infrastructure has been put in place around the planet, and nowadays more than half of the world’s population use mobile phones.  Countless technical difficulties were solved en route;
  • Key to this build-out has been the fact that many companies were prepared to make huge financial investments, anticipating even larger financial paybacks as people use mobile technology;
  • If energy pricing is set properly (including full consideration for “negative externalities“), won’t companies find sufficient incentives to invest heavily in sustainable energy sources, and develop solutions – roughly similar to what happened for the mobile industry?
  • As a specific example, what about the prospects for gigantic harvesting of solar energy from a scheme such as Desertec (as described here)?

Mark answered:

  • The investment needed for new energy sources (at the scale required) dwarfs the investment even of the mobile telephony industry;
  • New energy sources have too much ground to catch up.  For example, every year, China installs as many additional coal-based energy generators as the entire existing UK installed base of such generators.

Around the table, it seemed generally agreed that we do need to prepare for a scenario in which fossil fuels remain in very substantial use over the decades ahead.

The role of green subsidies

Sophia Tickell raised the question of whether government subsidies could make a significant difference to the speed of transition to renewable energy sources.  South Korea is perhaps the leading example of where a government green stimulus package is having a significant effect.

Attractive beneficiaries for government subsidies (to recap earlier discussion) would presumably include products for electrical storage and CCS.

On the other hand, it’s possible for governments to pick losers as well as winners, with consequent waste of public funds.  Also, government subsidies can in some cases lead to technology failing to develop as efficiently and as innovatively as it ought to.  For this reason, it was suggested that “the environmental movement may have oversold the idea of a Green New Deal”.

Discussion continued:

  • Government should be putting the right framework in place, for market mechanisms to drive the selection and development of desirable products.  This includes identifying and allocating the costs of negative externalities, and establishing a proper “level playing field”;
  • When a desirable momentum is emerging in the marketplace, governments should be getting behind it.

I asked: is it already clear what is this “desirable momentum” that governments should be getting behind?  People around the table started listing options.  It quickly became a long list.  This provoked the following insightful comment from Juan Pablo Crespi, COO Europe of Alkol – to whom I’ll give the final word:

There are too many momentums – but not enough permanentums!

Create a free website or blog at WordPress.com.