dw2

4 October 2019

A Silicon Valley centred view of the prehistory of smartphones

Filed under: films, Psion, smartphones, Smartphones and beyond, Symbian — Tags: , , — David Wood @ 7:11 am

The first thing to say about the film General Magic (official site, IMDb) is that you should watch it.

The film is available on iTunes, and on Amazon Prime, and from lots of other places too.

It tracks the rise and fall of the company with the same name as the film – General Magic – and the impact of the people involved in the subsequent rise of the smartphone industry.

Here’s the trailer:

General Magic was conceived inside Apple in 1989, and, as reported at the time by the New York Times, was spun out as a separate entity in 1990:

Three well-known technologists from Apple Computer Inc., including perhaps its most distinguished programmer, Bill Atkinson, are forming a new company.

Mr. Atkinson and Marc Porat, another Apple researcher, are leaving Apple to form General Magic Inc. They will be joined by Andy Hertzfeld, who designed much of the operating system of the Macintosh computer in the early 1980’s but who has not been with Apple for six years.

The company, which will be based in Mountain View, Calif., will make products known as ”personal intelligent communicators.” While the company would not elaborate, industry analysts believe this refers to handheld devices that can store appointments and other information and transmit and receive information, either over telephone lines or over the airwaves…

Mr. Atkinson, 39 years old, has been with Apple for 12 years. He is best known for developing Hypercard, a program included with every Macintosh that allows users to organize information on computerized notecards…

Dr. Porat, 42, who will be president of General Magic, came to Apple in 1988 and was manager of business development in the advanced technology group.

Much of the vision of the company came from Marc Porat, the company’s first CEO. The film quotes from a visionary email Marc Porat had written in 1990 to John Sculley, at the time Apple’s CEO, about the kinds of devices their platform would enable:

A tiny computer, a phone, a very personal object… It must be beautiful. It must offer the kind of personal satisfaction that a fine piece of jewelry brings. It will have a perceived value even when it’s not being used. It will offer the comfort of a touchstone, the tactile satisfaction of a seashell, the enchantment of a crystal. Once you use it you won’t be able to live without it.

The film also shows a large book of design ideas, dating (it said) back to the same formative era. Here are a couple of sketches from the book:

(the name given to the concept device in this sketch is “remotaphonputer”), and

General Magic operated in stealth mode until 1993. By that time, many of Apple’s key employees had transferred to work there, all inspired by the vision of designing a hardware and software platform for handheld “personal intelligent communicators”. Also by that time, the company had assembled a formidable collection of investors, including AT&T, Sony, Motorola, Philips, and Panasonic. These backers were joined in due course by British Telecom, Cable & Wireless, France Telecom, Fujitsu, Mitsubishi, NTT DoCoMo, Nortel, Sanyo, and Toshiba. All these companies provided a senior executive to what was known as the “Founding Partner’s Council”, and backed General Magic with a financial stake of up to $6M each.

One powerful feature of the film is the interweaving of lots of archival documentary footage, shot during the company’s formative period by Sarah Kerruish. That shows, for example, a young Megan Smith saying that, one day, the technology would fit onto a device as small as a “Dick Tracy wristwatch”. Smith later served under Barack Obama as the USA’s Chief Technology Officer. As it happens, another young employee at General Magic, Kevin Lynch, went on to lead the Apple Watch project. And that’s only the start of the list of stellar accomplishments which lay ahead for one-time General Magic employees. As the film points out, around 98% of the present day smartphone market can be traced to efforts of two people who sat close to each other in the General Magic workspace: Andy Rubin, the designer of Android, and Tony Fadell, who is credited as “father of the iPod” and “co-inventor of the iPhone”. Rubin is mainly missing from the movie, but Fadell appears regularly, speaking with great passion.

With the aid of Goldman Sachs, General Magic IPO’ed in February 1995, in a huge publicity wave. The company’s stock price promptly doubled.

However, the company was already facing many issues. I touched on these in a short section in my own 2014 book Smartphones and Beyond, in the chapter entitled “Die like IBM, or die like Apple”. That chapter referred to various ideas contemplated by Psion in the mid 1990s as its software team laboured to create what would later be known as Symbian OS – software initially targeted for a device code-named “Protea” (this would reach the market in 1997 as the Psion Series 5):

Psion’s confidence about the prospects for its forthcoming 32-bit software system (the future Symbian OS), that was so high when serious coding had started on that system in late 1994, had grown considerably more tentative by the first half of 1996. One reason was the repeated delays in the development project, as mentioned in the previous chapter. But another reason was the changing competitive landscape.

Mounting competition

As the Protea project zigzagged forwards, sideways, and sometimes backwards, with uncertain and seemingly unknowable end date, Psion’s senior management wondered from time to time whether a different software system, obtained from outside the company, might prove a better bet for future mobile products.

For example, there was a period of around a week when senior management were enthralled by the “Magic Cap” system from a Californian company with the audacious name “General Magic”. General Magic had been spun out of Apple in 1990…

Partners and investors for General Magic included Sony, Motorola, AT&T, Philips, Matsushita, and British Telecom. A powerful buzz about the company’s future meant that its stock price doubled on the first day of its IPO in February 1995. It was therefore understandable that Psion senior managers would consider joining the General Magic party, and licence Magic Cap for use in their PDAs. After all, one of them whispered, think of the cost savings from not needing to maintain such a large in-house team of Psion’s own software developers. How much simpler to utilise ready-made software, created by the same team that had achieved such marvels in their earlier careers elsewhere in Silicon Valley! And how cute the Magic Cap software seemed, with its real-world metaphors and winsome bouncing rabbit.

That particular fancy soon evaporated. The Magic Cap software might appear cute, but closer examination revealed shallowness (weak functionality) in practice. The devices brought to market – by Sony and Motorola – were pale shadows of what the General Magic marketing machine had previously led people to expect. In contrast, Psion could see the strength in depth baked into the developing 32-bit Epoc software system. Psion’s development team escaped this particular axe.

(See here for a longer excerpt from that chapter.)

Total sales of the two devices running General Magic’s software were a paltry 3,000 units. The devices fell a long way short of the vision, and had few redeeming features. The company started a brutal downward slide. Investors were left high and dry. The post-IPO stock price of $26 per share had fallen to $1.38 by 1999.

The film highlights a major learning: the way to implement a grand vision is via a series of incremental steps. Don’t try to fit every desired innovation into a single release of a product. Do it in stages, with good quality throughout. That’s a lesson which Tony Fadell took with him from General Magic to Apple in later life, where he oversaw regular increments to the functionality of the iPod, which in time laid the foundation for a similar set of regular increments in the functionality of the iPhone.

What the film emphasises less is the difficulty posed to the company by its wide set of powerful investors and their divergent interests. The governance problems of General Magic were high in the minds of the executives from Ericsson and Nokia who visited Psion’s offices in central London in April 1998 to discuss the potential formation of the Symbian joint venture. With the approval of a team from Nokia that included Mikko Terho and Juha Putkiranta, Ericsson’s Anders Wästerlid included the following points in a set of guiding principles:

Avoid the structure of General Magic

Need to be able to act fast

Need to learn how to deal effectively with conflicts within the group of owners

Yes, Ericsson and Nokia wanted other companies to become involved with the joint venture, in due course. However, they offered this practical observation:

The more people who are in the boat, the tougher it is to start. But it’s easy for more people to jump in once the boat is moving.

(That meeting, as well as many other steps in the formation of Symbian, are covered in a later chapter of my book, “Death Star or Nova”.)

To its credit, the film highlights one more way in which the vision of General Magic failed to anticipate market development: lack of appreciation of the forthcoming importance of the worldwide web. The services accessed on General Magic devices would be provided by the network operator, such as AT&T. It was an intern who, apparently, first drew this omission to the attention of the General Magic leadership.

Where the film does less well is in the implication running nearly all the way through, that the work of General Magic laid a uniquely important basis for what smartphones subsequently became. One commentator states, “Without General Magic, there could never have been Android”.

In this regard, the film provides an overly Silicon Valley centred view of the prehistory of today’s smartphones.

Here’s just some of what’s missing from that view, and from what General Magic was trying to accomplish:

  • The emergence (as just mentioned) of the web
  • Push technology, pioneered by BlackBerry RIM
  • The devices in Japan running on NTT DoCoMo’s network, with their rich ecosystem of iMode apps and services
  • The devices running Brew services on Qualcomm phones
  • Simple PC connectivity, as pioneered by Palm
  • Access to enterprise services, led by Microsoft’s handheld computers
  • Nokia’s first communicator, launched in 1996, running software from GeoWorks
  • The first device marketed as a smartphone, the GS 88 launched by Ericsson in 1997, also running GeoWorks software.

Last, but not least, I am bound to mention the very considerable thinking that took place at Psion, from the early 1980s onwards. When I started work at Psion as a software engineer in June 1988, I discovered that a huge amount of design had already taken place for what would eventually become the Psion Series 3 communicator. That design was an iteration on what Psion had learned in a number of earlier projects, including two generations of handheld organiser products. On the launch of the Organiser in 1984, Psion had declared the device to be “The world’s first practical pocket computer”. This phrase headlined a magazine promotion which can be found, along with lots of other useful archive material, on Eddie Slupski’s ‘Bioeddie’ website. The magazine article went on: “The Psion Organiser will change the way you work.” It was a prescient claim.

(For more about these early design ideas at Psion, see, you guessed it, another chapter from my book, “Before the beginning”. For the causes of Psion’s eventual departure from the consumer handheld space, see later chapters of the same book.)

It’s often said that history gets to be written by the victors. The world’s most successful smartphones, by far, are from two Silicon Valley companies, Apple and Google. Therefore Silicon Valley insiders have the right to emphasise the flow of personnel and ideas from General Magic to these current platforms. Indeed, it’s a fascinating story.

However, my own view is that one dimensional accounts of history – however absorbing – are likely to mislead. The best products and services are able to integrate insights and contributions from multiple diverse backgrounds.

22 June 2018

June 24th: A doubly historic day for Symbian

Filed under: smartphones, Smartphones and beyond, Symbian, Symbian Foundation, Symbian Story — Tags: — David Wood @ 11:13 pm

This Sunday will be the 24th of June 2018. It’s a doubly historic day for Symbian – and for the evolution of the smartphone industry.

Twenty years ago, to the day, the birth of Symbian Ltd was announced to the world. My colleague on the very first Symbian Operational Board, Bill Batchelor, urged all employees of the new company to “make a special note in your Agenda”.

Here’s a copy of my own Agenda file from that day – taken from my Psion Series 5mx:

The name “Symbian” had been a carefully guarded secret up to that day. The new company had been referred to, within planning documents with tightly restricted distribution, as “Nova” – representing an astronomically bright object. The very idea of a new company took nearly all employees of Psion (Symbian’s parent) as a surprise that morning.

The thinking behind the creation of the new company was spelt out at an “Impact” meeting in the Metropole Hotel on London’s Edgware Road. To mark the anniversary of this event, it’s an appropriate occasion for me to share some of the slides presented that day:












With the wisdom of hindsight, these slides can be seen as a mixture of powerful vision and naively audacious optimism.

Fast forward exactly ten years, to 24th June 2008. That morning, I was in Cambridge, ready to share news to all Symbian employees there that another huge transformation was to take place in the Symbian universe. Here’s my Agenda entry for that day:

I can, again, convey the essence of the news via a selection of the slides used on that day:






Once again, with the wisdom of hindsight, these slides can be seen as a mixture of powerful vision and naively audacious optimism.

More of our thinking was captured at the time by blogposts written by me (“Symbian 2-0”) and my Symbian Foundation Leadership Team colleague John Forsyth (“Welcome to the future of Symbian”).

The thinking behind the Symbian Foundation also built upon an inspired piece of strategic communication from earlier in 2008, led by Symbian’s CEO from that time, Nigel Clifford. He called it “the Symbian story”:






Did either of these powerful visions, set out ten years apart, have much of a chance of becoming a reality? Opinions still differ on these questions. I’ve set out my own analysis in my book “Smartphones and beyond: lessons from the remarkable rise and fall of Symbian” (published in September 2014).

Footnote

Any former Symbian employee who wishes to take part in some face-to-face reminiscences, and who can be near Symbian’s former headquarters in Boundary Row, Southwark, London, on the evening of Friday 29th June, is welcome to get in touch. Several of us will be gathering, ready to share news and views of what was, and what might have been.

10 May 2015

When the future of smartphones was in doubt

It’s hard to believe it now. But ten years ago, the future of smartphones was in doubt.

At that time, I wrote these words:

Smartphones in 2005 are roughly where the Internet was in 1995. In 1995, there were, worldwide, around 20-40 million users of the Internet. That’s broadly the same number of users of smartphones there are in the world today. In 1995, people were debating the real value of Internet usage. Was it simply an indulgent plaything for highly technical users, or would it have lasting wider attraction? In 2005, there’s a similar debate about smartphones. Will smartphones remain the preserve of a minority of users, or will they demonstrate mass-market appeal?

That was the opening paragraph in an essay which the Internet site Archive.org has preserved. The original location for the essay, the Symbian corporate website, has long since been retired, having been absorbed inside Nokia infrastructure in 2009 (and, perhaps, being absorbed in turn into Microsoft in 2014).

Symbian Way Back

The entire essay can be found here, warts and all. That essay was the first in a monthly series known as “David Wood Insight” which extended from September 2005 to September 2006. (The entire set still exists on Archive.org – and, for convenience, I’ve made a copy here.)

Ten years later, it seems to me that wearable computers in 2015 are roughly where smartphones were in 2005 (and where the Internet was in 1995). There’s considerable scepticism about their future. Will they remain the preserve of a minority of users, or will they demonstrate mass-market appeal?

Some commentators look at today’s wearable devices, such as Google Glass and Apple Watch, and express disappointment. There are many ways these devices can be criticised. They lack style. They lack “must have” functionality. Their usability leaves a lot to be desired. Battery life is too short. And so on.

But, like smartphones before them – and like the world-wide web ten years earlier – they’re going to get much, much better as time passes. Positive feedback cycles will ensure that happens.

I share the view of Augmented Reality analyst Ori Inbar, who wrote the following a few months ago in an updated version of his “Smart Glasses Market Report”:

When contemplating the evolution of technology in the context of the evolution of humanity, augmented reality (AR) is inevitable.

Consider the innovation cycles of computing from mainframes, to personal computers, to mobile computing, to wearables: It was driven by our need for computers to get smaller, better, and cheaper. Wearables are exactly that – mini computers on track to shrink and disappear on our bodies. In addition, there is a fundamental human desire for larger and sharper displays – we want to see and feel the world at a deeper level. These two trends will be resolved with Augmented Reality; AR extends our natural senses and will become humans’ primary interface for interaction with the world.

If the adoption curve of mobile phones is to repeat itself with glasses – within 10 years, over 1 billion humans will be “wearing.”

The report is packed with insight – I fully recommend it. For example, here’s Ori’s depiction of four waves of adoption of smart glasses:

Smart Glasses Adoption

(For more info about Augmented Reality and smart glasses, readers may be interested in the forthcoming Augmented World Expo, held 8-10 June at the Santa Clara Convention Centre in Silicon Valley.)

What about ten more years into the future?

All being well, here’s what I might be writing some time around 2025, foreseeing the growing adoption of yet another wave of computers.

If 1995-2005 saw the growth of desktop and laptop computers and the world wide web, 2005-2015 saw the growing ubiquity of smartphones, and 2015-2025 will see the triumph of wearable computers and augmented reality, then 2025-2035 is likely to see the increasingly widespread usage of nanobots (nano-computers) that operate inside our bodies.

The focus of computer innovation and usage will move from portables to mobiles to wearables to insideables.

And the killer app of these embedded nanobots will be internal human enhancement:

  • Biological rejuvenation
  • Body and brain repair
  • Body and brain augmentation.

By 2025, these applications will likely be in an early, rudimentary state. They’ll be buggy, irritating, and probably expensive. With some justification, critics will be asking: Will nanobots remain the preserve of a minority of users, or will they demonstrate mass-market appeal?

7 September 2014

Beyond ‘Smartphones and beyond’

You techno-optimists don’t understand how messy real-life projects are. You over-estimate the power of technology, and under-estimate factors such as sociology, psychology, economics, and biology – not to mention the cussed awkwardness of Murphy’s Law.

That’s an example of the kind of retort that has frequently come to my ears in the last few years. I have a lot of sympathy for that retort.

I don’t deny being an optimist about what technology can accomplish. As I see things:

  • Human progress has taken place by the discovery and adoption of engineering solutions – such as fire, the wheel, irrigation, sailing ships, writing, printing, the steam engine, electricity, domestic kitchen appliances, railways and automobiles, computers and the Internet, plastics, vaccinations, anaesthetic, contraception, and better hygiene
  • Forthcoming technological improvements can propel human experience onto an even higher plane – with our minds and bodies both being dramatically enhanced
  • As well as making us stronger and smarter, new technology can help us become kinder, more collaborative, more patient, more empathetic, less parochial, and more aware of our cognitive biases and blindspots.

But equally, I see lots of examples of technology failing to live up to the expectations of techno-optimists. It’s not just that technology is a two-edged sword, and can scar as well as salve. And it’s not just that technology is often mis-employed in search of a “techno-solution” when a piece of good old-fashioned common sense could result in a better approach. It’s that new technologies – whether ideas for new medical cures, new sustainable energy sources, improved AI algorithms, and so on – often take considerably longer than expected to create useful products. Moreover, these products often have weaker features or poorer quality than anticipated.

Here’s an example of technology slowdown. A 2012 article in Nature coined the clever term “Eroom’s Law” to describe a steady decline in productivity of R&D research in new drug discovery:

Diagnosing the decline in pharmaceutical R&D efficiency

Jack W. Scannell, Alex Blanckley, Helen Boldon & Brian Warrington

The past 60 years have seen huge advances in many of the scientific, technological and managerial factors that should tend to raise the efficiency of commercial drug research and development (R&D). Yet the number of new drugs approved per billion US dollars spent on R&D has halved roughly every 9 years since 1950, falling around 80-fold in inflation-adjusted terms.

In other words, although the better-known Moore’s Law describes a relatively steady increase in computational power, Eroom’s Law describes a relatively steady decrease in the effectiveness of research and development within the pharmaceutical industry. By the way, Eroom isn’t a person: it’s Moore spelt backwards.

The statistics are bleak, as can be seen in a graph from Derek Lowe’s In the pipeline blog:

R&D trend

But despite this dismal trend, I still see plenty of reason for measured optimism about the future of technology. That’s despite the messiness of real-world projects, out-dated regulatory and testing systems, perverse incentive schemes, institutional lethargy, and inadequate legacy platforms.

This measured optimism comes to the surface in the later stages of the book I have just e-published, at the end of a two-year period of writing it. The book is entitled Smartphones and beyond: lessons from the remarkable rise and fall of Symbian.

As I write in the opening chapter of that book (an excerpt is available online):

The story of the evolution of smartphones is fascinating in its own right – for its rich set of characters, and for its colourful set of triumphs and disasters. But the story has wider implications. Many important lessons can be drawn from careful review of the successes and, yes, the failures of the smartphone industry.

When it comes to the development of modern technology, things are rarely as simple as they first appear. Some companies bring great products to the market, true. These companies are widely lauded. But the surface story of winners and losers can conceal many twists and turns of fortune. Behind an apparent sudden spurt of widespread popularity, there frequently lies a long gestation period. The eventual blaze of success was preceded by the faltering efforts of many pioneers who carved new paths into uncertain terrain. The steps and missteps of these near-forgotten pioneers laid the foundation for what was to follow.

So it was for smartphones. It is likely to be the same with many of the other breakthrough technologies that have the potential to radically transform human experience in the decades ahead. They are experiencing their missteps too.

I write this book as an ardent fan of the latent power of modern technology. I’ve seen smartphone technology playing vital roles in the positive transformation of human experience, all over the world. I expect other technologies to play even more radical roles in the near future – technologies such as wearable computing, 3D printing, synthetic biology, nanotechnology, neuro-enhancement, rejuvenation biotech, artificial intelligence, and next generation robotics. But, as with smartphones, there are likely to be many disappointments en route to eventual success. Indeed, even the “eventual success” cannot be taken for granted.

General principles about the progress of complex technology emerge from reflecting on the details of actual examples. These details – the “warts and all”, to use the phrase attributed to Oliver Cromwell – can confound naive notions as to how complex technology should be developed and applied. As I’ll show from specific examples in the chapters ahead, the details show that failure and success often co-exist closely within the same project. A single project often contains multiple layers, belonging to numerous different chains of cause and effect.

It is my sincere hope that an appreciation of real-world examples of these multiple layers of smartphone development projects will enable a better understanding of how to guide the future evolution of other forms of smart technology. I’ll describe what I call “the core smartphone skillset”, comprising excellence in the three dimensions of “platforms”, “marketing”, and “execution”. To my mind, these are the key enablers of complex technological progress. These enablers have a critical role to play for smartphones, and beyond. Put together well, these enablers can climb mountains.

I see the core smartphone skillset as having strong applicability in wider technological areas. That skillset provides the basis for overcoming the various forms of inertia which are holding back the creation of important new solutions from emerging technologies. The existence of that skillset underlies my measured optimism in the future.

But there’s nothing inevitable about how things will turn out. The future holds many potential scenarios, with varying degrees of upside and downside. The question of which scenarios will become actual, depends on inspired human vision, choice, action, and follow-through. Fortune sometimes hinges on the smallest of root causes. Effects can then cascade.

Hits and misses

As well as the description of the core smartphone skillset” – which I see as having strong applicability in wider technological areas – the book contains my thoughts as the things that Symbian did particularly well over the years, resulting in it becoming the leading smartphone operating system for many years in the first decade of this century:

  1. Investors and supporters who were prepared to take a long-term view of their investments
  2. Regular deliveries against an incremental roadmap
  3. Regularly taking the time to improve the architecture of the software and the processes by which it was delivered
  4. High calibre software development personnel
  5. Cleanly executed acquisitions to boost the company’s talent pool
  6. Early and sustained identification of the profound importance of smartphones
  7. Good links with the technology foresight groups and other roadmap planning groups within a range of customers
  8. A product that was open to influence, modification, and customisation by customers
  9. Careful attention given to enabling an ecosystem of partners
  10. An independent commercial basis for the company, rather than it being set up as a toothless “customers’ cooperative”
  11. Enabling competition.

Over the course of that time, Symbian:

  • Opened minds as to what smartphones could accomplish. In particular, people realised that there was much more they could do with mobile phones, beyond making phone calls. This glimpse encouraged other companies to enter this space, with alternative smartphone platforms that achieved, in the end, considerably greater success
  • Developed a highly capable touch UI platform (UIQ), years before Android/iPhone
  • Supported a rich range of different kinds of mobile devices, all running versions of the same underlying software engine; in particular, Symbian supported the S60 family of devices with its ergonomically satisfying one-handed operating mode
  • Achieved early demonstrations of breakthrough capabilities for mobile phones, including streaming multimedia, smooth switching between wifi and cellular networks, maps with GPS updates, the use of a built-in compass and accelerometer, and augmented reality – such as in the 2003 “Mozzies” (“Mosquitos”) game for the Siemens SX1
  • Powered many ground-breaking multimedia smartphones, imaging smartphones, business smartphones, and fashion smartphones
  • Achieved sales of some 500 million units – with the majority being shipped by Nokia, but with 40 million being shipped inside Japan from 2003 onwards, by Fujitsu, Sharp, Mitsubishi, and Sony Ericsson
  • Held together an alliance of competitors, among the set of licensees and partners of Symbian, with the various companies each having the opportunity to benefit from solutions initially developed with some of their competitors in mind
  • Demonstrated that mobile phones could contain many useful third party applications, without at the same time becoming hotbeds of viruses
  • Featured in some of the best-selling mobile phones of all time, up till then, such as the Nokia 5230, which sold 150 million units.

Alongside the list of “greatest hits”, the book also contains a (considerably longer) list of “greatest misses”, “might-have-beens”, and alternative histories. The two lists are distilled from wide-ranging “warts and all” discussions in earlier chapters of the book, featuring many excerpts from my email and other personal archives.

LFS cover v2

To my past and present colleagues from the Symbian journey, I offer my deep thanks for all their contributions to the creation of modern smartphones. I also offer my apologies for cases when my book brings back memories of episodes that some participants might prefer to forget. But Symbian’s story is too important to forget. And although there is much to regret in individual actions, there is much to savour in the overall outcome. We can walk tall.

The bigger picture now is that other emerging technology sectors risk repeating the stumbles of the smartphone industry. Whereas the smartphone industry recovered from its early stumbles, these other industries might not be so fortunate. They may die before they get off the ground. Their potential benefits might remain forever out of grasp, or be sorely delayed.

If the unflattering episodes covered in Smartphones and beyond can help increase the chance of these new technology sectors addressing real human need quickly, safely, and fully, then I believe it will be worth all the embarrassment and discomfort these episodes may cause to Symbian personnel – me included. We should be prepared to learn from one of the mantras of Silicon Valley: “embrace failure”. Reflecting on failure can provide the launchpad for greater future success, whether in smartphones, or beyond.

Early reviewers of the book have commented that the book is laden with lessons, from the pioneer phase of the smartphone industry, for the nascent technology sectors where they are working – such as wearable computing, 3D printing, social robots, and rejuvenation biotechnology. The strength of these lessons is that they are presented, in this book, in their multi-dimensional messiness, with overlapping conflicting chains of cause and effect, rather than as cut-and-dried abstracted principles.

In that the pages of Smartphones and beyond, I do choose to highlight some specific learnings from particular episodes of smartphone success or smartphone failure. Some lessons deserve to be shouted out. For other episodes, I leave it to readers to reach their own conclusions. In yet other cases, frankly, it’s still not clear to me what lessons should be drawn. Writers who follow in my tracks will no doubt offer their own suggestions.

My task in all these cases is to catalyse a discussion, by bringing stories to the table that have previously lurked unseen or under-appreciated. My fervent hope is that the discussion will make us all collectively wiser, so that emerging new technology sectors will proceed more quickly to deliver the profound benefits of which they are capable.

Some links

For an extended series of extracts from the different chapters in Smartphones and beyond, see the official website for the book.

The book is available for Kindle download from Amazon: UK site and International (US) site.

  • Note that readers without Kindle devices can read the book on a convenient app on their PC or tablet (or smartphone!) – these apps are freely available.

I haven’t created a hard-copy print version. The book would need to be split into three parts to make it physically convenient. Far better, in my view, to be able to carry the book on a light electronic device, with “search” and “bookmark” facilities that very usefully augment the reading experience.

Opportunities to improve

Smartphones and beyond no doubt still contains a host of factual mistakes, errors in judgement, misattributions, personal biases, blind spots, and other shortcomings. All these faults are the responsibility of the author. To suggest changes, either in an updated edition of this book or in some other follow-up project, please get in touch.

Where the book includes copies of excerpts from Internet postings, I have indicated the online location where the original article could be found at the time of writing. In case an article has moved or been deleted since then, it can probably be found again via search engines or the Internet archive, https://archive.org/. If I have inadvertently failed to give due credit to an original writer, or if I have included more text than the owner of the original material wishes, I will make amends in a later edition, upon reasonable request. Quoted information where no source is explicitly indicated is generally taken from copies of my emails, memos in my electronic diary, or other personal archives.

One of the chapters of this book is entitled “Too much openness”. Some readers may feel I have, indeed, been too open with some of the material I have shared. However, this material is generally at least 3-5 years old. Commercial lines of business no longer depend on it remaining secret. So I have applied a historian’s licence. We can all become collectively wiser by discussing it now.

Footnote

Finally, one other apology is due. As I’ve given my attention over the last few months to completing Smartphones and beyond, I’ve deprioritised many other tasks, and have kept colleagues from various important projects waiting for longer than they expected. I can’t promise that I’ll be able to pick up all these other pieces quickly again – that kind of overcommitment is one of the failure modes discussed throughout Smartphones and beyond. But I feel like I’m emerging for a new phase of activity – “Beyond ‘Smartphones and Beyond'”.

To help transition to that new phase, I’ve moved my corporate Delta Wisdom website to a new format (WordPress), and rejigged what had become rather stale content. It’s time for profound change.

Banner v6

 

6 September 2014

Smartphones and the mass market: the view from 2005

Filed under: insight, openness, smartphones, Symbian — Tags: , , — David Wood @ 7:07 am

The following article was originally published in the “David Wood Insight” series on Symbian’s corporate website, on 11 Sept 2005 (the first article in that series). I’m re-posting it here now since:

  • It’s one of a number of pages in an old website of mine that I am about to retire – so the article needs a new home
  • The message is aligned with many that are included in my book “Smartphones and beyond” that was published earlier this week.

Smartphones and the mass market

Smartphones in 2005 are roughly where the Internet was in 1995. In 1995, there were, worldwide, around 20-40 million users of the Internet. That’s broadly the same number of users of smartphones there are in the world today. In 1995, people were debating the real value of Internet usage. Was it simply an indulgent plaything for highly technical users, or would it have lasting wider attraction? In 2005, there’s a similar debate about smartphones. Will smartphones remain the preserve of a minority of users, or will they demonstrate mass-market appeal?

Personally, I have no doubt as to the answer. Smartphones are for all. Smartphones – the rapidly emerging new category of advanced computer-based programmable mobile phones – will appeal to all users of mobile phones worldwide. Smartphones are built from highly advanced technology, but they won’t require a highly advanced understanding of technology in order to use them. You won’t need to be a computer whiz kid or the neighbourhood geek to get real value from a smartphone. Nor will you need a huge income to afford one. Smartphones will help us all to keep in better touch with the friends and colleagues and information and discussions and buzz that are important to us, and they are opening up new avenues for entertainment, education, and enterprise alike. Smartphones will help us all to work hard and play hard. And in line with their name, smartphones will also help us to work smart and play smart.

Smartphones differ from ordinary mobile phones in two fundamental ways: how they are built, and what they can do. The way they’re built – using open systems to take advantage of the skills, energy, and innovation of numerous companies from a vast range of industries – means that smartphones extend the phenomenal track record of mobile phones by improving constantly and rapidly, year by year. As for what they can do – in line with the “phone” part of their name, smartphones provide all the capabilities of ordinary mobile phones, in a particularly user-friendly style – but that’s only the start. In addition, smartphones increasingly use their computer-brains and network-connectivity to:

  • Excel at all sorts of communication – instant messaging, email, video conferencing, and more
  • Help us to organise our to-do lists, ideas, calendars, contacts, expenses, and finances
  • Boost our effectiveness in our business life – connecting us smoothly into corporate data systems
  • Entertain us with huge libraries of first-rate music, mobile TV, social networking, and games
  • Guide us around the real world, with maps and location-based services, so we never get lost again
  • Subsume our keys, ID cards, tickets, and wallets – so we can leave these old-world items at home
  • Connect us into online information banks covering every topic under the sun.

In short, smartphones are rapidly becoming our preferred mobile gateway into the ever growing, ever more important digital universe.

In 1995, some people wondered if the Internet would ever really be “useful” (as opposed to a passing fad). Today, you may wonder if mobile access to the Internet will ever really be useful. But if you look at what smartphone users are already able to do, you’ll soon see the benefit. If it’s valuable to you to be able to access bbcnews.com or amazon.com or ebay.com or betfair.com or imdb.com or google.com or wikipedia.org (etc) from your desktop PC, you’ll often find it equally valuable to check these sites when you’re away from your desktop. Because you’ll be carrying your smartphone with you, almost everywhere you go, you’ll have the option to keep in touch with your digital universe, whenever it suits you.

Crucial to this increase in value is the steady set of remarkable improvements that have taken place for both output and input mechanisms on smartphones. Screens have become clearer, larger, sharper, and more colourful. Intelligent handwriting recognition systems, word-completion systems, multi-way jog-dials, Bluetooth keyboards, and ingenious folding and twisting mechanisms, mean that it’s easier than ever before to enter data into smartphones. And faster networks, more powerful on-board processors, and more sophisticated software, mean that “www” on a smartphone no longer means “world wide wait” but rather “world wide wow“.

In parallel, costs are dipping, further and further. In part, this is due to Moore’s Law, which summarises the steady technological improvements in the design and manufacture of integrated circuits and memory chips. But in large part, it’s also due to the dramatic “learning effects” which can take place when world-class companies go through several rounds of finding better and better ways to manufacture their smartphone products. In turn, the magnitude of these “learning effects” depends on the open nature of the smartphone industry. Here, the word “open” has the following meanings:

  • Programmable: the intelligence and power that is in a smartphone can be adapted, extended, and enhanced by add-on applications and services, which tap into the underlying richness of the phone to produce powerful new functionality
  • Interchangeable: services that are designed for use in one smartphone can be deployed on other smartphones as well, from different manufacturers (despite the differences between these smartphones), with minimal (often zero) changes; very importantly, this provides a better incentive to companies to invest the effort to create these new services
  • Collaborative: the process of creating and evolving smartphone products benefits from the input and ideas of numerous companies and individuals; for example, the manufacturers of the second generation of a given smartphone can build in some of the unexpectedly successful applications that were designed by previously unknown companies as add-ons to the first generation of that smartphone
  • Open-minded: the companies who create smartphones have their own clear ideas about how smartphones should operate and what they should contain, but newcomers have ample means and encouragement to introduce different concepts – the industry is ready to accept new ideas
  • Free-flowing: the success of a company in the smartphone industry is substantially determined by its skills with innovation, technology, marketing, and operations, rather than any restrictive contractual lock-ins or accidents of location or history.

In all these cases, the opposite to “open” is “closed”. More specifically, the opposite of the successful smartphone industry would see:

  • Fixed functionality, that changes only slowly and/or superficially
  • Non-standard add-ons, that are each restricted to a small subset of phones
  • Overly competitive companies, whose fierce squabbles would destroy the emerging market before it has time to take root
  • Closed-minded companies who are misguidedly convinced that they have some kind of divine right to act as “benign dictators” for the sake of the industry
  • Bottlenecks and chokes that strangle or restrict innovation.

Foreseeing the risks of a closed approach to smartphone development, the mobile phone industry came together to create Symbian, seven years ago. The name “Symbian” is derived from the biological term “symbiosis”, emphasising the positive aspects of collaboration. Symbian’s motto is “cooperate before competing”. It’s no surprise that the vast majority of today’s smartphones utilise Symbian OS.

The volumes of smartphones in circulation are already large enough to trigger a tipping point – more and more industry players, across diverse fields, are choosing Symbian OS to deploy their new solutions. And at the same time as manufacturers are learning how to provide smartphone solutions ever more affordably, users are learning (and then sharing) surprising new ways they can take advantage of the inner capability and richness of their smartphones. It’s a powerful virtuous cycle. That’s the reason why each new generation of smartphone product has a wider appeal.

Footnote (2014): The site http://www.symbian.com has long since been decommissioned, but some of its content can be retrieved from archive.org. After some sleuthing, I tracked down a copy of the above article here.

27 September 2013

Technology for improved collaborative intelligence

Filed under: collaboration, Hangout On Air, intelligence, Symbian — David Wood @ 1:02 pm

Interested in experiences in using Google Hangout On Air, as a tool to improve collaborative intelligence? Read on.

Google’s Page Rank algorithm. The Wikipedia editing process. Ranking of reviewers on Amazon.com. These are all examples of technology helping to elevate useful information above the cacophony of background noise.

To be clear, in such examples, insight doesn’t just come from technology. It comes from a combination of good tools plus good human judgement – aided by processes that typically evolve over several iterations.

For London Futurists, I’m keen to take advantage of technology to accelerate the analysis of radical scenarios for the next 3-40 years. One issue is that the general field of futurism has its own fair share of background noise:

  • Articles that are full of hype or sensationalism
  • Articles motivated by commercial concerns, with questionable factual accuracy
  • Articles intended for entertainment purposes, but which end up overly influencing what people think.

Lots of people like to ramp up the gas while talking about  the future, but that doesn’t mean they know what they’re talking about.

I’ve generally been pleased with the quality of discussion in London Futurists real-life meetings, held (for example) in Birkbeck College, Central London. The speaker contributions in these meetings are important, but the audience members collectively raise a lot of good points too. I do my best to ‘referee’ the discussions, in a way that a range of opinions have a chance to be aired. But there have been three main limitations with these meetups:

  1. Meetings often come to an end well before we’ve got to the bottom of some of the key lines of discussion
  2. The insights from individual meetings can sometimes fail to be taken forward into subsequent meetings – where the audience members are different
  3. Attendance is limited to people who live near to London, and who have no other commitments when the meetup is taking place.

These limitations won’t disappear overnight, but I have plans to address them in stages.

I’ve explained some of my plans in the following video, which is also available at http://londonfuturists.com/2013/08/30/introducing-london-futurists-academy/.

As the video says, I want to be able to take advantage of the same kind of positive feedback cycles that have accelerated the progress of technology, in order to accelerate in a similar way the generation of reliable insight about the future.

As a practical step, I’m increasingly experimenting with Google Hangouts, as a way to:

  • Involve a wider audience in our discussions
  • Preserve an online record of the discussions
  • Find out, in real-time, which questions the audience collectively believes should be injected into a conversation.

In case it helps others who are also considering the usage of Google Hangouts, here’s what I’ve found out so far.

The Hangouts are a multi-person video conference call. Participants have to log in via one of their Google accounts. They also have to download an app, inside Google Plus, before they can take part in the Hangout. Google Plus will prompt them to download the app.

The Hangout system comes with its own set of plug-in apps. For example, participants can share their screens, which is a handy way of showing some PowerPoint slides that back up a point you are making.

By default, the maximum number of attendees is 10. However, if the person who starts the Hangout has a corporate account with Google (as I have, for my company Delta Wisdom), that number can increase to 15.

For London Futurists meetings, instead of a standard “Hangout”, I’m using “Hangouts On Air” (sometime abbreviated as ‘HOA’). These are started from within their own section of the Google Plus page:

  • The person starting the call (the “moderator”) creates the session in a “pre-broadcast” state, in which he/she can invite a number of participants
  • At this stage, the URL is generated, for where the Hangout can be viewed on YouTube; this vital piece of information can be published on social networking sites
  • The moderator can also take some other pre-broadcast steps, such as enabling the “Questions” app (further mentioned below)
  • When everyone is ready, the moderator presses the big red “Start broadcast” button
  • A wide audience is now able to watch the panellists discussion via the YouTube URL, or on the Google Plus page of the moderator.

For example, there will be a London Futurists HOA this Sunday, starting 7pm UK time. There will be four panellists, plus me. The subject is “Projects to accelerate radical healthy longevity”. The details are here. The event will be visible on my own Google Plus page, https://plus.google.com/104281987519632639471/posts. Note that viewers don’t need to be included in any of the Circles of the moderator.

As the HOA proceeds, viewers typically see the current speaker at the top of the screen, along with the other panellists in smaller windows below. The moderator has the option to temporarily “lock” one of the participants into the top area, so that their screen has prominence at that time, even though other panellists might be speaking.

It’s good practice for panellists to mute their microphones when they’re not speaking. That kind of thing is useful for the panellists to rehearse with the moderator before the call itself (perhaps in a brief preview call several days earlier), in order to debug connectivity issues, the installation of apps, camera positioning, lighting, and so forth. Incidentally, it’s best if there’s a source of lighting in front of the speaker, rather than behind.

How does the audience get to interact with the panellists in real-time? Here’s where things become interesting.

First, anyone watching via YouTube can place text comments under the YouTube window. These comments are visible to the panellists:

  • Either by keeping an eye on the same YouTube window
  • Or, simpler, within the “Comment Tracker” tab of the “Hangout Toolbox” app that is available inside the Hangout window.

However, people viewing the HOA via Google Plus have a different option. Provided the moderator has enabled this feature before the start of the broadcast, viewers will see a big button inviting them to ask a question, in a text box. They will also be able to view the questions that other viewers have submitted, and to give a ‘+1’ thumbs up endorsement.

In real-time, the panellists can see this list of questions appear on their screens, inside the Hangout window, along with an indication of how many ‘+1′ votes they have received. Ideally, this will help the moderator to pick the best question for the panel to address next. It’s a small step in the direction of greater collaborative intelligence.

At time of writing, I don’t think there’s an option for viewers to downvote each others’ questions. However, there is an option to declare that a question is spam. I expect the Google team behind HOA will be making further enhancements before long.

This Questions app is itself an example of how the Google HOA technology is improving. The last time I ran a HOA for London Futurists, the Questions apps wasn’t available, so we just used the YouTube comments mechanism. One of the panellists for that call, David Orban, suggested I should look into another tool, called Google Moderator, for use in a subsequent occasion. I took a look, and liked what I saw, and my initial announcement of my next HOA (the one happening on Sunday) mentioned that I would be using Google Moderator. However, as I said, technology moves on quickly. Giulio Prisco drew my attention to the recently announced Questions feature of the HOA itself – a feature that had previously been in restricted test usage, but which is now available for all users of HOA. So we’ll be using that instead of Google Moderator (which is a rather old tool, without any direct connection into the Hangout app).

The overall HOA system is still new, and it’s not without its issues. For example, panellists have a lot of different places they might need to look, as the call progresses:

  • The “YouTube comment tracker” screen is mutually exclusive from the “Questions” screen: panellists can only have one of these visible to them at a time
  • These screens are in turn mutually exclusive from a text chat window which the panellists can use to chat amongst themselves (for example, to coordinate who will be speaking next) while one of the other panellists is speaking.

Second – and this is what currently makes me most apprehensive – the system seems to put a lot of load on my laptop, whenever I am the moderator of a HOA. I’ve actually seen something similar whenever my laptop is generating video for any long call. The laptop gets hotter and hotter as time progresses, and might even cut out altogether – as happened one hour into the last London Futurists HOA (see the end of this video).

Unfortunately, when the moderator’s PC loses connection to the HOA, the HOA itself seems to shut down (after a short delay, to allow quick reconnections). If this happens again on Sunday, we’ll restart the HOA as soon as possible. The “part two” will be visible on the same Google Plus page, but the corresponding YouTube video will have its own, brand new URL.

Since the last occurrence of my laptop overheating during a video call, I’ve had a new motherboard installed, plus a new hard disk (as the old one was giving some diagnostic errors), and had all the dust cleaned out of my system. I’m keeping my fingers crossed for this Sunday. Technology brings its challenges as well as many opportunities…

Footnote: This threat of over-heating reminds me of a talk I gave on several occasions as long ago as 2006, while at Symbian, about “Horsemen of the apocalypse”, including fire. Here’s a brief extract:

Standing in opposition to the potential for swift continuing increase in mobile technology, however, we face a series of major challenges. I call them “horsemen of the apocalypse”.  They include fire, flood, plague, and warfare.

“Fire” is the challenge of coping with the heat generated by batteries running ever faster. Alas, batteries don’t follow Moore’s Law. As users demand more work from their smartphones, their battery lifetimes will tend to plummet. The solution involves close inter-working of new hardware technology (including multi-core processors) and highly sophisticated low-level software. Together, this can reduce the voltage required by the hardware, and the device can avoid catching fire as it performs its incredible calculations…

22 December 2012

Symbian retrospective: hits and misses

Filed under: More Than Smartphones, Nokia, Psion, retrospection, Symbian, Symbian Story — David Wood @ 12:19 pm

As another calendar year draws to a close, it’s timely to reflect on recent “hits” and “misses” – what went well, and what went less well.

In my case, I’m in the midst of a much longer reflection process, surveying not just the past calendar year, but the entire history (and pre-history) of Symbian – the company that played a significant role in kick-starting the smartphone phenomenon, well before anyone had ever heard of “iPhone” or “Android”. I’m channeling my thoughts into a new book that I’m in the midst of writing, “More than smartphones”. The working subtitle is “Learning from Symbian…”

I’ve got no shortage of source material to draw on – including notes in my electronic diary that go all the way back to January 1992. As I note in my current draft of the introductory chapter,

My analysis draws on an extensive set of notes I’ve taken throughout two decades of leadership positions in and around Symbian – including many notes written in the various Psion PDA organisers that have been my constant electronic companions over these years. These Psion devices have been close to my heart, in more than one sense.

Indeed, the story of Symbian is deeply linked with that of Psion, its original parent. Psion and Symbian were both headquartered in London and shared many of the same personnel…

The PDAs that Psion brought to market in the 1980s and 1990s were the mobile game-changers of their day, generating (albeit on a smaller scale) the same kind of industry buzz as would later manifest around new smartphone releases. Psion PDAs were also the precursors for much of the functionality that subsequently re-emerged in smartphones, satellite navigation products, and other smart mobile devices.

My own Psion electronic diary possibly ranks among the longest continuously maintained personal electronic agendas in the world. The oldest entry in it is at 2.30pm on Friday 31st January, 1992. That entry reads “Swedes+Danes Frampton St”. Therein lies a tale.

At that time, Psion’s commercial departments were located in a building in Frampton Street, in central London, roughly midway between the Edgware Road and Maida Vale tube stations. Psion’s technical teams were located in premises in Harcourt Street, about 15 minutes distance by walking. In 1992, the Psion Series 3a PDA was in an early stage of development, and I was trialling its new Agenda application – an application whose UI and rich set of views were being built by a team under my direction. In parallel, discussions were proceeding with representatives from several overseas distributors and partners, about the process to create versions of Psion PDAs for different languages: German, French, Italian, Spanish… and Swedish and Danish…

As the person who assembled and integrated all the files for different software versions, I met the leads of the teams doing the various translations. That day, 31st January 1992, more than 20 years ago, was among my first meetings with work professionals from the Nordic countries.

I recall that we discussed features such as keyboards that would cater for the additional characters of the Danish and Swedish alphabets, like ‘å’ and ‘ø’. I had no inkling in 1992 that professionals from Denmark, Sweden, and Finland (including employees of mobile phone juggernauts Ericsson and Nokia) would come to have such a far-reaching influence on the evolution of the software which was at that time being designed for the Series 3a. Nor could I foresee the subsequent 20 year evolution of my electronic agenda file:

  • Through numerous pieces of Series 3a hardware
  • Via the Series 3c successor to the Series 3a, with its incrementally improved hardware and software systems
  • Via a one-time migration process to a new data format, for the 32-bit Series 5, which could cope with much larger applications, and with much larger data files (the Series 3 family used a 16-bit architecture)
  • Into the Series 5mx successor of the Series 5
  • Through numerous pieces of Series 5mx hardware – all of which give (in their “About” screen) 1999 as the year of their creation; when one piece of hardware ceases to work, because, say, of problems with the screen display or the hinge mechanism, I transfer the data onto another in my possession…

Why 1999 is the end of this particular run of changes is a fascinating tale in its own right. It’s just one of many fascinating tales that surround the changing fortunes of the players in the Symbian story…

Step forwards from chapter one to the penultimate chapter, “Symbian retrospective”. This is where I’d welcome some extra input from readers of this blog, to complement and refine my own thinking.

This is the first of two retrospective chapters that draw conclusions from the episodes explored in preceding pages. In this chapter, I look at the following questions:

  • Out of all the choices over the years made by the players at the heart of the Symbian world, which ones were the most significant?
  • Of these choices, which were the greatest hits, and which the greatest misses?
  • With the advantage of hindsight, what are the different options that could credibly have been pursued which would have had the greatest impact on Symbian success or failure?

So far, my preliminary outline for that chapter lists a total of twenty hits and misses. Some examples of the hits:

  • Create Symbian with a commercial basis (not a “customers’ cooperative”)
  • Support from multiple key long-term investors (especially Nokia)
  • Enable significant differentiation (including network operator customisation)
  • Focus on performance and stability

And some examples of the misses:

  • Failure to appreciate the importance of the mobile web browser
  • Tolerating Symbian platform fragmentation
  • Failure to provide a CDMA solution
  • Failure to merge Nokia S60 and Symbian

My question for readers of this blogpost is: What would be in your list (say, 1-3 items) of the top hits and misses of decisions made by Symbian?

Footnote: Please accept some delays in your comments appearing. WordPress may hold them in a queue awaiting my review and approval. But I’m in a part of the world with great natural beauty and solitude, where the tour guides request that we all leave our wireless communication devices behind on the ship when we land for the daily excursions. Normally I would have balked at that very idea, but there are times and places when multi-tasking has to stop!

24 August 2012

Duplication stuplication

Filed under: Accenture, Android, brain simulation, Connectivity, cryonics, death, futurist, Symbian — David Wood @ 12:04 am

I had a mixture of feelings when I looked at the display of the Agenda application on my Samsung Note smartphone:

On the face of things, I was going to be very busy at 09:00 that morning – I had five simultaneous meetings to attend!

But they were all the same meeting. And in fact I had already cancelled that meeting. Or, at least, I had tried to cancel that meeting. I had tried to cancel it several times.

The meeting in question – “TPR” – the Technology Planning Review that I chair from time to time inside Accenture Mobility – is a meeting I had organised, on a regularly repeating basis. This particular entry was set to repeat every four weeks. Some time earlier, I had decided that this meeting no longer needed to happen. From my Outlook Calendar on my laptop, I had pressed the button that, ordinarily, would have sent cancellation messages to all attendees. At first, things seemed to go well – the meeting disappeared from sight in my Outlook calendar.

However, a couple of hours later, I noticed it was still there, or had re-appeared. Without giving the matter much thought, I imagined I must have experienced some finger problem, and I repeated the cancellation process.

Some time later, I glanced at my engagements for that day on my smartphone – and my heart sank. The entry was shown no less than nine times, stacked on top of each other. One, two, three, four, five, six, seven, eight, nine. Woops.

(The screenshot above only shows the entry appearing five times. That’s because I deleted four of the occurrences before I had the presence of mind to record the image for posterity.)

To tell the truth, I also had a wry, knowing smile. It was a kind of “aha, this confirms that synchronising agendas can be hard” smile. “Thank goodness there are duplicate entry bugs on Android phones too!”

That uncharitable thought had its roots in many moments of personal embarrassment over the years, whenever I saw examples of duplicated entries on phones running Symbian OS. The software that synchronised agenda information across more than one device – for example, between a PC and a connected Symbian smartphone – got into a confused state on too many occasions. Symbian software had many strengths, but laser accuracy of agenda entry synchronisation was not one of them.

But in this case, there was no Symbian software involved. The bug – whatever it was – could not be blamed on any software (such as Symbian OS) for which I personally had any responsibility.

Nevertheless, I still felt bad. The meeting entry that I had created, and had broadcast to a wide number of my Accenture Mobility colleagues, was evidently misbehaving on their calendars. I had to answer several emails and instant messaging queries: Is this meeting happening or not?

Worse, the same problem applied to every one of the repeating entries in the series. Entries show up in the calendars of lots of my Accenture colleagues, once every four weeks, encouraging them to show up for a meeting that is no longer taking place.

Whether I tried to cancel all the entries in the series, or just an individual entry, the result was the same. Whether I cancelled them from my smartphone calendar or from Outlook on my laptop, the result was the same. Namely, the entry disappeared for a while, but re-appeared a few hours later.

Today I tried again. Looking ahead to the meeting slot planned for 30th August, I thought I would be smart, and deleted the entry, both from my smartphone calendar, and from Outlook on my laptop, within a few seconds of each other, just in case a defective synchronisation between the two devices was to blame. You guessed it: the result was the same. (Though this time it was about three hours before the entry re-appeared, and I was starting to think I had cracked it after all.

So what’s going on? I found a clue in an unexpected place – the email folder of Deleted Items in Microsoft Outlook. This showed an email that was unread, but which had somehow moved directly into the Deleted Items folder, without me seeing it.

The entry read as follows:

Microsoft Outlook on behalf of <one of the meeting participants>

One or more problems with this meeting were detected by Exchange 2010.

This meeting is missing from your calendar. You’re the meeting organizer and some attendees still have the meeting on their calendar.

And just as Outlook had silently moved this email into the Deleted Items folder, without drawing my attention to it, Outlook had also silently reinstated the meeting, in my calendar and (it seems) in everyone else’s calendar, without asking me whether or not that was a good idea. Too darned clever.

I still don’t know how to fix this problem. I half-suspect there’s been some kind of database corruption problem – perhaps caused by Microsoft Exchange being caught out by:

  • Very heavy usage from large numbers of employees (100s of 1000s) within one company
  • Changes in policy for how online meetings are defined and operated, in between when the meeting was first created, and when it was due to take place
  • The weird weather we’ve experienced in London this summer
  • Some other who-knows-what strange environmental race conditions.

However, I hear of tales of other colleagues experiencing similar issues with repeating entries they’ve created, which provides more evidence of a concrete software defect, rather than a random act of the universe.

Other synchronisation problems

As I said, when I reflected on what was happening, I had a wry smile. Synchronisation of complex data between different replications is hard, when the data could be altered in more than one place at the same time.

Indeed, it’s sometimes a really hard problem for software to know when to merge apparent duplicates together, and when to leave them separated. I’m reminded of that fact whenever I do a search in the Contacts application on my Android phone. It often lists multiple entries corresponding to a single person. Some of these entries show pictures, but others don’t. At first, I wasn’t sure why there were multiple entries. But closer inspection showed that some details came from my Google mail archives, some from my collection of LinkedIn connections, some from my set of Facebook Friends, and so on. Should the smartphone simply automatically merge all these instances together? Not necessarily. It’s sometimes not clear whether the entries refer to the same person, or to two people with similar names.

If that’s a comparatively simple example, let me finish with an example that takes things further afield. It’s not about the duplication and potential re-integration of agenda entries. Nor is it about the duplication and potential re-integration of pieces of contacts info. It’s about the duplication and potential re-integration of human minds.

Yes: the duplication and potential re-integration of human minds.

That’s a topic that came up in a presentation in the World Future 2012 conference I attended in Toronto at the end of July.

The talk was given by John M. Smart, founder and president of the Acceleration Studies Foundation. The conference brochure described the talk as follows:

Chemical Brain Preservation: How to Live “Forever”

About 57 million unique and precious human beings die every year, or 155,000 people every day. The memories and identities in their brains are permanently lost at present, but may not be in the near future.

Chemical brain preservation is a technique that many scientists believe may inexpensively preserve our memories and identity when we die, eventually for less than $10,000 per person in the developed world, and less than $3,000 per person in the developing world. Preserved brains can be stored at room temperature in cemeteries, in contract storage, or even in private homes. Our organization, the Brain Preservation Foundation (brainpreservation.org), is offering a $100,000 prize to the first scientific team to demonstrate that the entire synaptic connectivity of mammalian brains, where neuroscientists believe our memories and identities reside, can be perfectly preserved using these low-cost chemical techniques.

There is growing evidence that chemically preserved brains can be “read” in the future, like a computer hard drive, so that memories, and even the complete identities of the preserved individuals can be restored, using low-cost automated techniques. Amazingly, given the accelerating rate of technological advance, a person whose brain is preserved in 2020 might “return” to the world, most likely in a computer form, as early as 2060, while their loved ones and some of their friends are still alive…

Note: this idea is different from cryonics. Cryonics also involves attempted brain preservation, at an ultra-low temperature, but with a view to re-animating the brain some time in the future, once medical science has advanced enough to repair whatever damage brought the person to the point of death. (Anyone serious about finding out more about cryonics might be interested in attending the forthcoming Alcor-40 conference, in October; this conference marks the 40th anniversary of the founding of the most famous cryonics organisation.)

In contrast, the Brain Preservation Foundation talks about reading the contents of a brain (in the future), and copying that information into a computer, where the person can be re-started. The process of reading the info from the brain is very likely to destroy the brain itself.

There are several very large questions here:

  • Could the data of a brain be read with sufficient level of detail, and recreated in another substrate?
  • Once recreated, could that copy of the brain be coaxed into consciousness?
  • Even if that brain would appear to remember all my experiences, and assert that it is me, would it be any less of a preservation of me than in the case of cryonics itself (assuming that cryonics re-animation could work)?
  • Given a choice between the two means of potential resurrection, which should people choose?

The first two of these questions are scientific, whereas the latter two appear to veer into metaphysics. But for what it’s worth, I would choose the cryonics option.

My concern about the whole program of “brain copying” is triggered when I wonder:

  • What happens if multiple copies of a mind are created? After all, once one copy exists in software, it’s probably just as easy to create many copies.
  • If these copies all get re-animated, are they all the same person?
  • Imagine how one of these copies would feel if told “We’re going to switch you off now, since you are only a redundant back-up; don’t worry, the other copies will be you too”

During the discussion in the meeting in Toronto, John Smart talked about the option to re-integrate different copies of a single mind, resulting in a whole that is somehow better than each individual copy. It sounds an attractive idea in principle. But when I consider the practical difficulties in re-integrating duplicated agenda entries, a wry, uneasy smile comes to my lips. Re-integrating complex minds will be a zillion times more complicated. That project could be the most interesting software development project ever.

9 April 2012

Six weeks without Symbian

Filed under: Accenture, Android, Apple, applications, Psion, Samsung, smartphones, Symbian, UIQ — David Wood @ 10:58 am

It’s only six weeks, but in some ways, it feels like six months. That’s how much time has passed since I’ve used a Symbian phone.

These six weeks separate me from nearly thirteen years of reliance on a long series of different Symbian phones. It was mid-1999 when prototype Ericsson R380 smartphones became stable enough for me to start using as my regular mobile phone. Since then, I’ve been carrying Symbian-powered smartphones with me at all times. That’s thirteen years of close interaction with various Symbian-powered devices from Nokia, Ericsson (subsequently Sony Ericsson), and Samsung – interspersed with shorter periods of using Symbian-powered devices from Panasonic, Siemens, Fujitsu, Sendo, Motorola, and LG.

On occasion over these years, I experimented with devices running other operating systems, but my current Symbian device was never far away, and remained my primary personal communication device. These non-Symbian devices always left me feeling underwhelmed – too much functionality was missing, or was served up in what seemed sub-optimal ways, compared to what I had learned to expect.

But ahead of this year’s Mobile World Congress in Barcelona, held 27th Feb to 1st Mar, I found three reasons to gain a greater degree of first-hand experience with Android:

  1. I would be meeting representatives of various companies who were conducting significant development projects using Android, and I wished to speak from “practical knowledge” rather than simply from “book knowledge”
  2. Some of my colleagues from Accenture had developed apps for Android devices, that I wanted to be able to demonstrate with confidence, based on my own recurring experience of these apps
  3. One particular Android device – the Samsung Galaxy Note – seemed to me to have the potential to define a disruptive new category of mobile usage, midway between normal smartphones and tablets, with its radically large (5.3″) screen, contained in a device still light enough and small enough to be easily portable in my shirt-top pocket.

I was initially wary about text entry on the Galaxy Note. My previous encounters with Android devices had always left me frustrated when trying to enter data, without the benefits of a QWERTY keyboard (as on my long-favourite Nokia E6 range of devices), or fluid hand-writing recognition (as on the Sony Ericsson P800/P900/P910).

But in the course of a single day, three separate people independently recommended me to look at the SwiftKey text entry add-on for Android. SwiftKey takes advantage of both context and personal history to predict what the user is likely to be typing into a given window on the device. See this BBC News interview and video for a good flavour of what SwiftKey provides. I installed it and have been using it non-stop ever since.

With each passing day, I continue to enjoy using the Galaxy Note, and to benefit from the wide ecosystem of companies who create applications for Android.

Here’s some of what I really like about the device:

  • The huge screen adds to the pleasure of browsing maps (including “street view”), web pages, and other graphic, video, or textual content
  • Time and again, there are Android apps available that tailor the mobile user experience more closely than web-browsing alone can achieve – see some examples on the adjacent screenshot
  • These apps are easy to find, easy to install, and (in general) easy to use
  • Integration with Google services (Mail, Maps, etc) is impressive
  • I’ve grown to appreciate the notification system, the ubiquitous “back” button, and the easy configurability of the device.

On the other hand, I’m still finding lots of niggles, in comparison with devices I’ve used previously:

  • It’s hard to be sure, but it seems likely to me that I get a working network connection on the device less often than on previous (e.g. Nokia) devices. This means for example that, when people try to ring me, it goes through to my voice mail more often than before, even though my phone appears (to my eyes) to be working. I’m finding that I reboot this device more often than previous devices, to re-establish a working network connection
  • I frequently press the “back” button by accident, losing my current context, for example when turning the phone from portrait to landscape; in those moments, I often silently bemoan the lack of a “forward” button
  • The device is not quite capable of one-handed use – that’s probably an inevitable consequence of having such a large screen
  • Although integration with Google services is excellent, integration with Outlook leaves more to be desired – particularly interaction with email notifications of calendar invites. For example, I haven’t found a way of accepting a “this meeting has been cancelled” notification (in a way that removes the entry from my calendar), nor of sending a short note explaining my reason for declining a given meeting invite, along with the decline notification, etc
  • I haven’t gone a single day without needing to recharge the device part-way through. This no doubt reflects my heavy use of the device. It may also reflect my continuing use of the standard Android web browser, whereas on Symbian devices I always quickly switched to using the Opera browser, with its much reduced data transfer protocols (and swifter screen refreshes)
  • Downloaded apps don’t always work as expected – perhaps reflecting the diversity of Android devices, something that developers often remark about, as a cause of extra difficulty in their work.

Perhaps what’s most interesting to me is that I keep on enjoying using the device despite all these niggles. I reason to myself that no device is perfect, and that several of the issues I’ve experienced are problems of success rather than problems of failure. And I continue to take pleasure out of interacting with the device.

This form factor will surely become more and more significant. Up till now, Android has made little market headway with larger tablets, as reported recently by PC World:

Corporations planning tablet purchases next quarter overwhelmingly voted for Apple’s iPad, a research firm said Tuesday [13th March]

Of the 1,000 business IT buyers surveyed last month by ChangeWave Research who said they would purchase tablets for their firms in the coming quarter, 84% named the iPad as an intended selection.

That number was more than ten times the nearest competitor and was a record for Apple.

However, Samsung’s success with the “phablet” form factor (5 million units sold in less than two months) has the potential to redraw the market landscape again. Just as the iPad has impacted people’s use of laptops (something I see every day in my own household), the Galaxy Note and other phablets have the potential to impact people’s use of iPads – and perhaps lots more besides.

Footnote 1: The Galaxy Note is designed for use by an “S Pen Stylus”, as well as by finger. I’ve still to explore the benefits of this Stylus.

Footnote 2: Although I no longer carry a Symbian smartphone with me, I’m still utterly reliant on my Psion Series 5mx PDA, which runs the EPOC Release 5 precursor to Symbian OS. I use it all the time as my primary Agenda, To-do list, and repository of numerous personal word documents and spreadsheets. It also wakens me up every morning.

Footnote 3: If I put on some rosy-eyed glasses, I can see the Samsung Galaxy Note as the fulfilment of the design vision behind the original “UIQ” device family reference design (DFRD) from the early days at Symbian. UIQ was initially targeted (1997-1999, when it was still called “Quartz”) at devices having broadly the same size as today’s Galaxy Note. The idea received lots of ridicule – “who’s going to buy a device as big as that?” – so UIQ morphed into “slim UIQ” that instead targeted devices like the Sony Ericsson P800 mentioned above. Like many a great design vision, UIQ can perhaps be described as “years ahead of its time”.

10 October 2010

The 10 10 10 vision

Filed under: BHAG, leadership, Symbian, vision — David Wood @ 10:19 am

The phrase “10 10 10” first entered my life at a Symbian Leadership Team offsite, held in Tylney Hall in Hampshire, in early January 2007.  We were looking for a memorable new target for Symbian.

A few months earlier, in November 2006, cumulative sales of Symbian-powered phones had passed the milestone of 100 million units, and quarterly sales were continuing to grow steadily.  It was therefore a reasonable (but still bold) extrapolation for Nigel Clifford, Symbian’s CEO, to predict:

The first 100 million took 8 years [from Symbian’s founding, in June 1998],  the next 100 million will take under 80 weeks

That forecast was shared with all Symbian employees later in the month, as we gathered in London’s Old Billingsgate Hall for the annual Kick Off event.  Nigel’s kick off speech also outlined the broader vision adopted by the Leadership Team at the offsite:

By 2010 we want to be shipping 10 million Symbian devices per month

If we do that we will be in 1 in 10 mobile phones shipping across the planet

So … 10 10 10

Fast forward nearly four years to the 10th of October, 2010 – to 10/10/10.  As I write these words at around 10 minutes past 10 o’clock, how did that vision turn out?

According to Canalys figures reported by the BBC, just over 27 million Symbian-powered devices were sold during Q2 2010:

Worldwide smartphone market

OS Q2 2010 shipments % share Q2 2009 shipments % share Growth
Symbian 27,129,340 43.5 19,178,910 50.3 41.5
RIM 11,248,830 18.0 7,975,950 20.9 41
Android 10,689,290 17.1 1,084,240 2.8 885.9
Apple 8,411,910 13.5 5,211,560 13.7 61.4
Microsoft 3,083,060 4.9 3,431,380 9.0 -10.2
Others 1,851,830 3.0 1,244,620 3.3 48.8
Total 62,414,260 100 38,126,660 100 63.3

Dividing by three, that makes just over 9 million units per month in Q2, which is marginally short of this part of the target.

But more significantly, Symbian failed by some way to have the mindshare, in 2010, that the 2007 Leadership Team aspired to.  As the BBC report goes on to say:

Although Symbian is consistently the most popular smart phone operating system, it is often overshadowed by Apple’s iPhone and Google Android operating system.

I’m a big fan of audacious goals – sometimes called BHAGs.  The vision that Symbian would become the most widely used and most widely liked software platform on the planet, motivated me and many of my colleagues to prodigious amounts of hard work over many years.

In retrospect, were these BHAGs misguided?  It’s too early to tell, but I don’t think so. Did we make mistakes along the way?  Absolutely. Should Symbian employees, nevertheless, take great pride in what Symbian has accomplished?  Definitely. Has the final chapter been written on smartphones?  No way!

But as for myself, my vision has evolved.  I’m no longer a “Symbian smartphone enthusiast”.  Instead, I’m putting my energies into being a “smartphone technology enthusiast“.

I don’t yet have a new BHAG in mind that’s as snappy as either “10 10 10” or “become the most widely used and most widely liked software platform on the planet”, but I’m working on it.

The closest I’ve reached so far is “smartphone technology everywhere“, but that needs a lot of tightening.

Footnote: As far as I can remember, the grainy photo below is another remnant of the Symbian Leadership Team Jan 2007 Tylney Hall offsite.  (The helmets and harnesses were part of a death-defying highwire team-building exercise.  We all lived to tell the tale.)

(From left to right: Standing: Andy Brannan, Charles Davies, Nigel Clifford, David Wood, Kent Eriksson, Kathryn Hodnett, Thomas Chambers, Jorgen Behrens; Squatting: Richard Lowther, Stephen Williams.)

Older Posts »

Blog at WordPress.com.