dw2

3 July 2013

Preparing for driverless vehicles

Filed under: driverless vehicles, futurist, Humanity Plus, robots, safety, sensors, vision, Volvo — David Wood @ 10:56 am

It’s not just Google that is working on autonomous, self-driving cars. Take a look at this recent Atutoblog video showing technology under development by Swedish manufacturer Volvo:

This represents another key step in the incorporation of smart wireless technology into motor vehicles.

Smart wireless technology already has the potential to reduce the number of lives lost in road accidents. A memo last month from the EU commission describes the potential effect of full adoption of the 112 eCall system inside cars:

The 112 eCall automatically dials Europe’s single emergency number 112 in the event of a serious accident and communicates the vehicle’s location to the emergency services. This call to 112, made either automatically by means of the activation of in-vehicle sensors or manually, carries a standardised set of data (containing notably the type and the location of the vehicle) and establishes an audio channel between the vehicle and the most appropriate emergency call centre via public mobile networks.

Using a built-in acceleration sensor, the system detects when a crash has occurred, and how serious it is likely to be. For example, it can detect whether the car has rolled over onto its roof. Then it transmits the information via a built-in wireless SIM. As the EU commission memo explains:

  • In 2012 around 28,000 people were killed and more than 1.5 million injured in 1.1 million traffic accidents on EU roads.
  • Only around 0.7% of vehicles are currently equipped with private eCall systems in the EU, with numbers barely rising. These proprietary systems do not offer EU-wide interoperability or continuity.
  • In addition to the tragedy of loss of life and injury, this also carries an economic burden of around EUR 130 billion in costs to society every year.
  • 112 eCall can speed up emergency response times by 40% in urban areas and 50% in the countryside. Fully deployed, it can save up to 2500 lives a year and alleviate severity of road injuries. In addition, thanks to improved accident management, it is expected to reduce congestion costs caused by traffic accidents.

That’s 9% fewer fatalities, as a result of emergency assistance being contacted more quickly.

But what if the number of accidents could themselves be significantly reduced? Here it’s important to know the predominant factors behind road accidents. A landmark investigation of 700,000 road accidents in the UK over 2005-2009 produced some surprising statistics. As reported by David Williams in the Daily Telegraph,

Vehicle defects are a factor in only 2.8 per cent of fatals, with tyres mostly to blame (1.5 per cent) followed by dodgy brakes (0.7 per cent).

The overriding message? It’s not your car or the “road conditions” that are most likely to kill you. It’s your own driving.

In more detail:

The biggest cause of road accidents in the UK today? The statistics are quite clear on this and it’s “driver error or reaction”. It’s listed by police as a factor in more than 65 per cent of fatal crashes and the heading covers a multitude of driving sins many of which you’re probably on first-name terms with. Topping the charge sheet is failing to look properly (the Smidsy factor – “Sorry mate, I didn’t see you’, relevant in 20.5 per cent of fatals involving driver error), followed by “loss of control” (34 per cent) which, says Greig, often means leaving yourself with “nowhere to go” after entering a bend or other situation, too quickly. Other errors include “poor turn or manoeuvre” (12 per cent) and “failed to judge other person’s path or speed” (11.6 per cent.).

Second biggest cause of fatal accidents, to blame for 31 per cent, is the “injudicious action”, an umbrella term for “travelled too fast for the conditions’ (15.9 per cent of those labelled injudicious), “exceeded speed limit” (13.9 per cent) or “disobeyed give-way or stop sign” (2.1 per cent)?

Third culprit in the daily gamble on who lives and who dies is “behaviour or inexperience” (28 per cent), which covers faults such as “careless, reckless or in a hurry” (17 per cent), “aggressive driving” (8.3 per cent) and “learner/inexperienced” (5.3 per cent).

The fourth main category is “impairment or distraction” (to blame for 19.6 per cent of fatal accidents) covering “alcohol” (a factor in 9.6 per cent of fatal accidents) and “distraction in vehicle” (2.6 per cent).

(The numbers add up to more than 100% because accidents are often attributed to more than one factor.)

These statistics give strength to the remark by Eric Schmidt, Executive Chairman of Google:

Your car should drive itself. It’s amazing to me that we let humans drive cars. It’s a bug that cars were invented before computers.

This suggestion commonly gives rise to three objections:

  1. The technology will never become good enough
  2. Even if the raw technology inside cars becomes better and better, there will need to be lots of changes in roadways, which will take a very long time to achieve
  3. Even if the technology did become good enough, legal systems will never catch up. Who’s going to accept liability for crashes caused by bugs in software?

The first objection is heard less often these days. As noted in a 2011 New York Times interview by Erik Brynjolfsson and Andrew P. McAfee of the M.I.T. Center for Digital Business, and authors of the book Race Against the Machine,

In 2004, two leading economists, Frank Levy and Richard J. Murnane, published “The New Division of Labor,”which analyzed the capabilities of computers and human workers. Truck driving was cited as an example of the kind of work computers could not handle, recognizing and reacting to moving objects in real time.

But last fall, Google announced that its robot-driven cars had logged thousands of miles on American roads with only an occasional assist from human back-seat drivers. The Google cars are but one sign of the times.

The third objection will surely fall away soon too. There are already mechanisms whereby some degree of liability can be accepted by car manufacturers, in cases where software defects (for example, in braking and accelerating systems) contribute to accidents. Some examples are covered in the CNN Money review “Toyota to pay $1.1 billion in recall case”.

Another reason the third objection will fall away is because the costs of not changing – that is, of sticking with human drivers – may be much larger than the costs of adopting driverless vehicles. So long as we continue to allow humans to drive cars, there will continue to be driver-induced accidents, with all the physical and social trauma that ensues.

That still leaves the second objection: the other changes in the environment that will need to take place, before driverless vehicles can be adopted more widely. And what other changes will take place, possibly unexpectedly, once driverless cars are indeed adopted?

That’s one of the topics that will be covered in this Saturday’s London Futurists event: The future of transport: Preparing for driverless vehicles? With Nathan Koren.

Nathan_Koren_PhotoAs explained by the speaker at the event, Nathan Koren,

The robots have arrived. Driverless transport pods are now in operation at Heathrow Terminal 5 and several other locations around the world. Driver-assist technologies are becoming commonplace. Many believe that fully driverless cars will be commercially available before the decade is out. But what will the broader impact of driverless transport be?

Automobiles were once called “horseless carriages,” as though the lack of a horse was their most important feature. In reality, they changed the way we work, live, and play; changed the way we design cities; and altered the global economy, political landscape, and climate.

It will be the same with driverless vehicles: we can expect their impact to be go far beyond simply being able to take our hands off the wheel.

This presentation and discussion goes into depth about how automated transport will affect our lives and reshape the the world’s cities.

Nathan is a London-based, American-born architect, transport planner, and entrepreneur. He is widely recognised as a leading authority on Automated Transit Networks, and designed what is scheduled to become the world’s first urban-scale system, in Amritsar, India. He works as a Transport Technology & Planning Consultant for Capita Symonds, and recently founded Podaris, a cloud-based platform for the collaborative design of Automated Transit Networks. Nathan holds an Architecture degree from Arizona State University, and an MBA from the University of Oxford.

I hope to see some readers of this blog, who are based in or near London, at the meeting this Saturday. It’s an important topic!

For additional background inspiration, I recommend the three short videos in the article “The future of travel: Transportation confronts its ‘Kodak moment'”. (Thanks to Nathan for drawing this article to my attention.)

Speakers in these videos talk about the industries that are liable to radical disruption (and perhaps irrelevance) due to the rise of collision-proof driverless vehicles. The airbag industry is one; car collision insurance might be another. I’m sure you can think of more.

Advertisements

Blog at WordPress.com.