dw2

19 September 2014

The new future of old age

In an enchanting four minute video, Korean artist Seok Jeong Hyeon, who is also known as Stonehouse, portrays the gradual aging of a baby girl. At first, the changes are slow, but they accumulate as years and then decades pass. The end result is an elderly woman, adorned with lines and wrinkles, who finally stops breathing.

The video is beautiful, and the woman maintains her own elegance to the end. As such, it presents a romantic view of aging. (And the video even hints at another romantic idea, namely reincarnation.)

In reality, as we age, we suffer from increasing numbers of aches and pains. We half-laugh when we say that we’re experiencing a “senior moment” of forgetfulness, but we notice our declining potency. Worse, every extra eight years that we live, past the age of around 35, we become twice as likely to die within the next year. In other words, our mortality rate increases exponentially. This was first observed in 1825 by British actuary and mathematician Benjamin Gompertz. Empirical data continues to support Gompertz, nearly two centuries later. For example, here’s a chart of the exponentially increasing death rate in the USA:

gompertz-mortality-curve

One of the factors underlying this upwards surge of mortality rate is the fact that, as we become older, we become increasingly vulnerable to various horrible diseases, such as cancer, heart disease, diabetes, Alzheimer’s, and lung disorders. Aging researcher Avi Roy of Oxford has collected information from the Office of National Statistics as follows:

Death rates from diseases

These five diseases aren’t random choices, by the way. They’re currently all high up in the list of the current largest causes of death.

The romantic notion of death is that we grow old gracefully, lose our powers almost imperceptibly, and die in our sleep, contented, surrounded by happy thoughts. In all too many cases, alas, death is preceded by viciously nasty diseases.

The Palo Alto prize

One of the deeply cherished visions of potential human progress has been the hope that, one day, we could reverse this state of affairs. Instead of the rate of mortality increasing with chronological age, it could remain constant. The terrible diseases listed, and others like them, which all currently increase their impact the older we get, could be conquered by the development of medicine – much the same as medicine has already made huge inroads against infectious diseases. The best solution would be, not a wide range of individual interventions each targeted at specific diseases, but an intervention that undoes the underlying damage of aging – the damage which accumulates throughout our body, and which makes it more likely that we fall prey to “diseases of old age”.

Until recently, that vision has lain well outside scientific orthodoxy. People have been loath to mention the idea, as it could spell the end of their academic careers.

However, that reticence seems to be changing. No less than eleven research teams from universities around the world have already publicly committed to entering for the recently announced “Palo Alto Longevity Prize”, which has a $1M prize fund. This video provides an introduction to the prize:

This video introduces key personnel from the different teams who are already engaged in developing solutions for contest:

.

The eleven teams and their leaders are listed in a recent TechCrunch article about the prize:

Doris Taylor, Ph.D.
Texas Heart Institute, Houston, TX
http://paloaltoprize.com/team/team-taylor-lab/ ‎
TEAM NAME: T.H.I. REGENERATIVE MEDICINE (approach: stem cells)

Dongsheng Cai, M.D., Ph.D.
Albert Einstein College of Medicine, New York, NY
http://paloaltoprize.com/team/cai-lab/
TEAM NAME: CAI LAB (approach: hypothalamic regulation)

Andreas Birkenfeld, M.D.
Charite University School of Medicine, Berlin, Germany
http://paloaltoprize.com/team/team-indy/
TEAM NAME: INDY (approach: gene modification)

Jin Hyung Lee, Ph.D.
Stanford University, Palo Alto, CA
http://paloaltoprize.com/team/team-lee-lab/
TEAM NAME: LEE LAB (approach: neuromodulation)

David Mendelowitz, Ph.D.
George Washington University, Washington, D.C.
http://paloaltoprize.com/team/team-mendelowitz-lab/
TEAM NAME: MENDELOWITZ LAB (approach: oxytocin)

Scott Wolf, M.D.
Mountain View, CA
http://paloaltoprize.com/team/volts-medical/
TEAM NAME: VOLTS MEDICAL (approach: inflammatory tissues)

Irving Zucker, Ph.D.
University of Nebraska Medical Center, Omaha, NE
http://paloaltoprize.com/team/team-zucker-lab/
TEAM NAME: ZUCKER LAB (approach: neuromodulation)

Brian Olshansky, M.D.
University of Iowa Medical Center, Iowa City, IA
http://paloaltoprize.com/team/team-olshansky-lab
TEAM NAME: IOWA PRO-AUTONOMIA (approach: not yet public)

William Sarill, M.A.
Arlington, MA
http://paloaltoprize.com/team/team-sarill-lab/
TEAM NAME: DECO (approach: pituitary hormones)

Steven Porges, Ph.D.
University of North Carolina, Chapel Hill, NC
http://paloaltoprize.com/team/team-porges-lab/
TEAM NAME: POLYVAGAL SCIENCE (approach: optimizing both the left & right vagal branches)

Shin-Ichiro Imai, M.D., Ph.D.
Washington University, St. Louis, MO
http://paloaltoprize.com/team/imai-lab/
TEAM NAME: IMAI LAB (approach: gene modification)

Approaching rejuvenation

AR Cover page v2In the light of all the fascinating developments around the field of increasing healthy longevity, I’ve decided that my next book will focus on that field.

The book is entitled “Approaching rejuvenation: Is science on the point of radically extending human longevity”. My intent is that the book will provide a bird’s eye report from the frontiers of the emerging field of rejuvenation biology:

  • The goals and motivations of key players in this field
  • The rapid progress that has been achieved in the last few years
  • The challenges that threaten to thwart further development
  • The critical questions that need to be faced.

The book will be based around material from interviews with more than a dozen researchers, engineers, entrepreneurs, and humanitarians, who are making it their life’s quest to enable human rejuvenation. I’ve already started doing these interviews.

I’m far from being an expert in any branch of biochemistry or medicine. However, I hope to bring five important angles to this writing task:

  1. My background in history and philosophy of science, wrestling with the question of how to distinguish science from pseudoscience, and the more general dilemma of how to decide whether lines of research are likely to turn out to be misguided dead-ends
  2. My professional career within the smartphone industry, where I saw a lot of similar aspirations (though on a much smaller scale) regarding the breakthroughs that fast-moving technology could enable
  3. My experience as a writer, in which I seek to explain complicated subjects in a relatively straightforward but engaging manner
  4. The six years in which I have had the privilege to organise meetups in London dedicated to futurist, singularitarian, and technoprogressive topics – meetings which have featured a wide variety of different attitudes and outlooks
  5. My aspiration as a humanitarian to probe for both the human upsides and the human downsides of changing technology – in order to set possible engineering breakthroughs (such as rejuvenation biotech) in a broader societal context.

If you have any suggestions or comments about this new book project, please don’t hesitate to get in touch.

The new future of old age

The London Futurists event next Saturday (27th September) addresses the same general theme. I close this blogpost with an excerpt from the description of the meetup. Please see the associated meetup page for more information about the speakers, for logistics details, and to register to attend. I hope to see some of you there!

Futurists, life extension advocates, transhumanists and others have been speaking for several decades already about the possibility, desirability, and broader consequences of significantly extending the human healthy lifespan. In this vision, the deteriorating effects of infirmity and old age could be radically postponed, and perhaps abolished altogether, via improvements in regenerative biotechnology.

Forget “70 is the new 50”. We might have the possibility of “150 is the new 50”. And alongside the existing booming cosmetics industry, with huge amounts spent to reduce the visible signs of aging, we might envision a booming rejuvenation industry, reversing the actual underlying biochemical damage that constitutes aging.

Recently, the pace of change in the field of healthy life extension seems to have increased: almost every day there are reports of possible breakthrough treatment methods, unexpected experimental results, new economic analyses of demographic changes, and innovative theoretical ideas. It’s hard to keep up with all these reports.

How can we evaluate this flurry of change?

Held in conjunction with the UN International Day of Older People (which occurs each year on 1st October), this event brings together a panel of expert speakers – William BainsMichael Price, Alex Zhavoronkov, and Sebastian Sethe – who will each give their assessment of “what’s new in the field of old age”:

  • What are some of the most significant research findings and other potential breakthroughs from the last five years?
  • What is the likelihood of significant practical change in healthy longevity within, say, the next 10-20 years?
  • What would be the economic, social, and psychological implications of such changes?
  • Are there any new grounds for scepticism or fear regarding these potential changes?
  • If individuals wish to help accelerate these changes, what should they do?
  • What are the major obstacles that could prevent real progress being made?

FB meeting image

 

 

Blog at WordPress.com.