dw2

2 November 2012

The future of human enhancement

Is it ethical to put money and resources into trying to develop technological enhancements for human capabilities, when there are so many alternative well-tested mechanisms available to address pressing problems such as social injustice, poverty, poor sanitation, and endemic disease? Is that a failure of priority? Why make a strenuous effort in the hope of allowing an elite few individuals to become “better than well”, courtesy of new technology, when so many people are currently so “less than well”?

These were questions raised by Professor Anne Kerr at a public debate earlier this week at the London School of Economics: The Ethics of Human Enhancement.

The event was described as follows on the LSE website:

This dialogue will consider how issues related to human enhancement fit into the bigger picture of humanity’s future, including the risks and opportunities that will be created by future technological advances. It will question the individualistic logic of human enhancement and consider the social conditions and consequences of enhancement technologies, both real and imagined.

From the stage, Professor Kerr made a number of criticisms of “individualistic logic” (to use the same phrase as in the description of the event). Any human enhancements provided by technology, she suggested, would likely only benefit a minority of individuals, potentially making existing social inequalities even worse than at present.

She had a lot of worries about technology amplifying existing human flaws:

  • Imagine what might happen if various clever people could take some pill to make themselves even cleverer? It’s well known that clever people often make poor decisions. Their cleverness allows them to construct beguiling sophistry to justify the actions they already want to take. More cleverness could mean even more beguiling sophistry.
  • Or imagine if rapacious bankers could take drugs to boost their workplace stamina and self-serving brainpower – how much more effective they would become at siphoning off public money to their own pockets!
  • Might these risks be addressed by public policy makers, in a way that would allow benefits of new technology, without falling foul of the potential downsides? Again, Professor Kerr was doubtful. In the real world, she said, policy makers cannot operate at that level. They are constrained by shorter-term thinking.

For such reasons, Professor Kerr was opposed to these kinds of technology-driven human enhancements.

When the time for audience Q&A arrived, I felt bound to ask from the floor:

Professor Kerr, would you be in favour of the following examples of human enhancement, assuming they worked?

  1. An enhancement that made bankers more socially attuned, with more empathy, and more likely to use their personal wealth in support of philanthropic projects?
  2. An enhancement that made policy makers less parochial, less politically driven, and more able to consider longer-term implications in an objective manner?
  3. And an enhancement that made clever people less likely to be blind to their own personal cognitive biases, and more likely to genuinely consider counters to their views?

In short, would you support enhancements that would make people wiser as well as smarter, and kinder as well as stronger?

The answer came quickly:

No. They would not work. And there are other means of achieving the same effects, including progress of democratisation and education.

I countered: These other methods don’t seem to be working well enough. If I had thought more quickly, I would have raised examples such as society’s collective failure to address the risk of runaway climate change.

Groundwork for this discussion had already been well laid by the other main speaker at the event, Professor Nick Bostrom. You can hear what Professor Bostrom had to say – as well as the full content of the debate – in an audio recording of the event that is available here.

(Small print: I’ve not yet taken the time to review the contents of this recording. My description in this blogpost of some of the verbal exchanges inevitably paraphrases and extrapolates what was actually said. I apologise in advance for any mis-representation, but I believe my summary to be faithful to the spirit of the discussion, if not to the actual words used.)

Professor Bostrom started the debate by mentioning that the question of human enhancement is a big subject. It can be approached from a shorter-term policy perspective: what rules should governments set, to constrain the development and application of technological enhancements, such as genetic engineering, neuro-engineering, smart drugs, synthetic biology, nanotechnology, and artificial general intelligence? It can also be approached from the angle of envisioning larger human potential, that would enable the best possible future for human civilisation. Sadly, much of the discussion at the LSE got bogged down in the shorter-term question, and lost sight of the grander accomplishments that human enhancements could bring.

Professor Bostrom had an explanation for this lack of sustained interest in these larger possibilities: the technologies for human enhancement that are currently available do not work that well:

  • Some drugs give cyclists or sprinters an incremental advantage over their competitors, but the people who take these drugs still need to train exceptionally hard, to reach the pinnacle of their performance
  • Other drugs seem to allow students to concentrate better over periods of time, but their effects aren’t particularly outstanding, and it’s possible that methods such as good diet, adequate rest, and meditation, have results that are at least as significant
  • Genetic selection can reduce the risk of implanted embryos developing various diseases that have strong genetic links, but so far, there is no clear evidence that genetic selection can result in babies with abilities higher than the general human range.

This lack of evidence of strong tangible results is one reason why Professor Kerr was able to reply so quickly to my suggestion about the three kinds of technological enhancements, saying these enhancements would not work.

However, I would still like to press they question: what if they did work? Would we want to encourage them in that case?

A recent article in the Philosophy Now journal takes the argument one step further. The article was co-authored by Professors Julian Savulescu and Ingmar Persson, and draws material from their book “Unfit for the Future: The Need for Moral Enhancement”.

To quote from the Philosophy Now article:

For the vast majority of our 150,000 years or so on the planet, we lived in small, close-knit groups, working hard with primitive tools to scratch sufficient food and shelter from the land. Sometimes we competed with other small groups for limited resources. Thanks to evolution, we are supremely well adapted to that world, not only physically, but psychologically, socially and through our moral dispositions.

But this is no longer the world in which we live. The rapid advances of science and technology have radically altered our circumstances over just a few centuries. The population has increased a thousand times since the agricultural revolution eight thousand years ago. Human societies consist of millions of people. Where our ancestors’ tools shaped the few acres on which they lived, the technologies we use today have effects across the world, and across time, with the hangovers of climate change and nuclear disaster stretching far into the future. The pace of scientific change is exponential. But has our moral psychology kept up?…

Our moral shortcomings are preventing our political institutions from acting effectively. Enhancing our moral motivation would enable us to act better for distant people, future generations, and non-human animals. One method to achieve this enhancement is already practised in all societies: moral education. Al Gore, Friends of the Earth and Oxfam have already had success with campaigns vividly representing the problems our selfish actions are creating for others – others around the world and in the future. But there is another possibility emerging. Our knowledge of human biology – in particular of genetics and neurobiology – is beginning to enable us to directly affect the biological or physiological bases of human motivation, either through drugs, or through genetic selection or engineering, or by using external devices that affect the brain or the learning process. We could use these techniques to overcome the moral and psychological shortcomings that imperil the human species.

We are at the early stages of such research, but there are few cogent philosophical or moral objections to the use of specifically biomedical moral enhancement – or moral bioenhancement. In fact, the risks we face are so serious that it is imperative we explore every possibility of developing moral bioenhancement technologies – not to replace traditional moral education, but to complement it. We simply can’t afford to miss opportunities…

In short, the argument of Professors Savulescu and Persson is not just that we should allow the development of technology that can enhance human reasoning and moral awareness, but that we must strongly encourage it. Failure to do so would be to commit a grave error of omission.

These arguments about moral imperative – what technologies should we allow to be developed, or indeed encourage to be developed – are in turn strongly influenced by our beliefs about what technologies are possible. It’s clear to me that many people in positions of authority in society – including academics as well as politicians – are woefully unaware about realistic technology possibilities. People are familiar with various ideas as a result of science fiction novels and movies, but it’s a different matter to know the division between “this is an interesting work of fiction” and “this is a credible future that might arise within the next generation”.

What’s more, when it comes to people forecasting the likely progress of technological possibilities, I see a lot of evidence in favour of the observation made by Roy Amara, long-time president of the Institute for the Future:

We tend to overestimate the effect of a technology in the short run and underestimate the effect in the long run.

What about the technologies mentioned by Professors Savulescu and Persson? What impact will be possible from smart drugs, genetic selection and engineering, and the use of external devices that affect the brain or the learning process? In the short term, probably less than many of us hope; in the longer term, probably more than most of us expect.

In this context, what is the “longer term”? That’s the harder question!

But the quest to address this kind of question, and then to share the answers widely, is the reason I have been keen to support the growth of the London Futurist meetup, by organising a series of discussion meetings with well-informed futurist speakers. Happily, membership has been on the up-and-up, reaching nearly 900 by the end of October.

The London Futurist event happening this weekend – on the afternoon of Saturday 3rd November – picks up the theme of enhancing our mental abilities. The title is “Hacking our wetware: smart drugs and beyond – with Andrew Vladimirov”:

What are the most promising methods to enhance human mental and intellectual abilities significantly beyond the so-called physiological norm? Which specific brain mechanisms should be targeted, and how?  Which aspects of wetware hacking are likely to grow in prominence in the not-too-distant future?

By reviewing a variety of fascinating experimental findings, this talk will explore:

  • various pharmacological methods, taking into account fundamental differences in Eastern and Western approaches to the development and use of nootropics
  • the potential of non-invasive neuro-stimulation using CES (Cranial Electrotherapy Stimulation) and TMS (Transcranial Magnetic Stimulation)
  • data suggesting the possibility to “awaken” savant-like skills in healthy humans without paying the price of autism
  • apparent means to stimulate seemingly paranormal abilities and transcendental experiences
  • potential genetic engineering perspectives, aiming towards human cognition enhancement.

The advance number of positive RSVPs for this talk, as recorded on the London Futurist meetup site, has reached 129 at the time of writing – which is already a record.

(From my observations, I have developed the rule of thumb that the number of people who actually turn up for a meeting is something like 60%-75% of the number of positive RSVPs.)

I’ll finish by returning to the question posed at the beginning of my posting:

  • Are these technological enhancements likely to increase human inequality (by benefiting only a small number of users),
  • Or are they instead likely to drop in price and grow in availability (the same as happened, for example, with smartphones, Internet access, and many other items of technology)?

My answer – which I believe is shared by Professor Bostrom – is that things could still go either way. That’s why we need to think hard about their development and application, ahead of time. That way, we’ll become better informed to help influence the outcome.

1 September 2012

The three most important questions about the future

Filed under: futurist, Humanity Plus, rejuveneering, risks, SENS, UKH+ — David Wood @ 2:51 pm

Futurism – the attempt at systematic, thoughtful speculation about the likely future – can be divided into smaller and larger questions.

Many of the ‘small’ questions are admittedly very interesting. Here are some examples.

Will China continue to grow in influence and strength? When will humans colonise Mars? Will increasing technological automation drive more and more people out of work? Will currencies converge (like a larger Euro-zone) or fragment? Is nuclear fusion ever going to prove viable? When will computers outplay humans at the game of Go, or drive cars better than humans, or create art better than humans? What will happen to the rate of population growth, and the rate of resource depletion? Will religion decline or resurge? Which of our present-day habits will our descendents look back on and regard as disdainfully as we now regard (say) slavery and cigarette smoking? Will money and campaign finance play an ever more domineering role in politics?

I call these questions ‘small’ only because there are even larger questions which frame any overall analysis of the future. In particular, I see three groups of questions as particularly pressing:

  1. The question of existential risk: Is it feasible that human civilisation could dramatically collapse within the next few decades – as a result of (e.g.) economic meltdown, rapidly changing climate, military or terrorist escapades, horrific weaponry or diseases, and/or rogue tech? Could we actually be living in the end times?
  2. The question of transhuman potential: Is it feasible that tech enhancements in the next few decades could radically transform and elevate human performance and experience – making us substantially smarter, stronger, healthier, longer-lived – potentially creating as big a step-up in capability as in the prehistoric jump from ape to human?
  3. The question of resource allocation: If transhuman potential lies within our grasp, should we indeed try to grasp it? Contrariwise, is any effort to accelerate transhumanism an indulgence, a distraction, or (even worse) a catalyst for disaster rather than progress? If there are credible risks of existential collapse, where should we actually be grasping? Which topics deserve the lion’s share of our collective attention, investment, analysis, and effort?

These questions are what I seek to see debated at the meetings of the London Futurists that I organise once every few weeks.

The questions defy any simple responses, but for what it’s worth, summary versions of my own answers are as follows:

  1. The threat of existential collapse is real. Human ingenuity and perseverance have led us through many major crises in the past, but there’s nothing guaranteed about our ability to survive even larger, more wicked, faster-breaking crises in the near future
  2. Technology is progressing at a remarkable rate, and the rate is likely to accelerate. Powerful combinations of nano-tech, AI, personal genetics, synthetic biology, robotics, and regenerative medicine, coupled with significantly improved understanding of diet and mental health (e.g. mindfulness), could indeed see the emergence of “Humanity+” amidst the struggles of the present-day. But there’s nothing inevitable about it
  3. Humanity+ (also known as “transhumanism”) is not only possible; it is highly desirable so long as the increased ‘external’ strengths of new human individuals and societies are balanced by matching increases in ‘internal’ strengths such as kindness, open-mindedness, and sociability. As I’ve written before, we need increased wisdom as well as increased smartness, and an increased desire for self-mastery as well as an increased ability to transcend limits.

The reason why Humanity+ is desirable (as well as being possible) is because I see the enhanced humans of the near future, with their much greater collective wisdom – improved versions of you and me – as being the best bet to guard against the very real threats of existential risk.

Speakers at the London Futurists meetings address different parts of this overall rich mix of existential risk and transhuman opportunity. As befits healthy debate, the speakers take different viewpoints. Some of these speakers are what can be called “professional futurists”, often hired by businesses to help them consider scenarios for evolution of technology, business, and products. Other speakers are what can be called “activists”, who personally commit large amounts of their time and energy to bringing about one or more aspects of a desirable transhuman future.

The speaker on Sunday 2nd September, Aubrey de Grey, falls into the second category. As noted on the webpage for the event,

Dr. Aubrey de Grey is a biomedical gerontologist based in Cambridge, UK and Mountain View, California, USA, and is the Chief Science Officer of SENS Foundation, a California-based 501(c)(3) charity dedicated to combating the aging process. He is also Editor-in-Chief of Rejuvenation Research, the world’s highest-impact peer-reviewed journal focused on intervention in aging.

Aubrey’s talk is entitled “Regenerative medicine for aging”. Note: this is not just about life extension – allowing longer lifespans. It is about health extension – allowing longer healthy lifespans, with resulting very positive benefits in reduced healthcare costs worldwide. As Aubrey writes,

In this talk I will explain why therapies that can add 30 healthy years to the remaining lifespan of typical 60-year-olds may well arrive within the next few decades.

If you’d like to find out more about Aubrey’s thinking and accomplishments, let me point you at two sources:

Alternatively, if you’re in or nearby London, by all means drop into the meeting 🙂

(We’re planning to record it and make the video available afterwards, for people unable to join on the day.)

16 June 2012

Beyond future shock

Filed under: alienation, books, change, chaos, futurist, Humanity Plus, rejuveneering, robots, Singularity, UKH+ — David Wood @ 3:10 pm

They predicted the “electronic frontier” of the Internet, Prozac, YouTube, cloning, home-schooling, the self-induced paralysis of too many choices, instant celebrities, and the end of blue-collar manufacturing. Not bad for 1970.

That’s the summary, with the benefit of four decades of hindsight, given by Fast Company writer Greg Lindsay, of the forecasts made in the 1970 bestseller “Future Shock” by husband-and-wife authors Alvin and Heidi Toffler.

As Lindsay comments,

Published in 1970, Future Shock made its author Alvin Toffler – a former student radical, welder, newspaper report and Fortune editor – a household name. Written with his wife (and uncredited co-author), Heidi Toffler, the book was The World Is Flat of its day, selling 6 million copies and single-handedly inventing futurism…

“Future shock is the shattering stress and disorientation that we induce in individuals by subjecting them to too much change in too short a time”, the pair wrote.

And quoting Deborah Westphal, the managing partner of Toffler Associates, in an interview at an event marking the 40th anniversary of the publication of Future Shock, Lindsay notes the following:

In Future Shock, the Tofflers hammered home the point that technology, culture, and even life itself was evolving too fast for governments, policy-makers and regulators to keep up. Forty years on, that message hasn’t changed. “The government needs to understand the dependencies and the convergence of networks through information,” says Westphal. “And there still needs to be some studies done around rates of change and the synchronization of these systems. Business, government, and organizational structures need to be looked at and redone. We’ve built much of the world economy on an industrial model, and that model doesn’t work in an information-centric society. That’s probably the greatest challenge we still face -understanding the old rules don’t apply for the future.”

Earlier this week, another book was published, that also draws on Future Shock for inspiration.  Again, the authors are a husband-and-wife team, Parag and Ayesha Khanna.  And again, the book looks set to redefine key aspects of the futurist endeavour.

This new book is entitled “Hybrid Reality: Thriving in the Emerging Human-Technology Civilization“.  The Khannas refer early on to the insights expressed by the Tofflers in Future Shock:

The Tofflers’ most fundamental insight was that the pace of change has become as important as the content of change… The term Future Shock was thus meant to capture our intense anxiety in the face of technology’s seeming ability to accelerate time. In this sense, technology’s true impact isn’t just physical or economic, but social and psychological as well.

One simple but important example follows:

Technologies such as mobile phones can make us feel empowered, but also make us vulnerable to new pathologies like nomophobia – the fear of being away from one’s mobile phone. Fifty-eight percent of millennials would rather give up their sense of smell than their mobile phone.

As befits the theme of speed, the book is a fast read. I downloaded it onto my Kindle on the day of its publication, and have already read it all the way through twice. It’s short, but condensed. The text contains many striking turns of phrase, loaded with several layers of meaning, which repay several rethinks. That’s the best kind of sound-bite.

Despite its short length, there are too many big themes in the book for me to properly summarise them here. The book portrays an optimistic vision, alongside a series of challenges and risks. As illustrations, let me pick out a selection of phrases, to convey some of the flavour:

The cross-pollination of leading-edge sectors such as information technology, biotechnology, pervasive computing, robotics, neuroscience, and nanotechnology spells the end of certain turf wars over nomenclature. It is neither the “Bio Age” nor the “Nano Age” nor the “Neuro Age”, but the hybrid of all of these at the same time…

Our own relationship to technology is moving beyond the instrumental to the existential. There is an accelerating centripetal dance between what technologies are doing outside us and inside us. Externally, technology no longer simply processes our instructions on a one-way street. Instead, it increasingly provides intelligent feedback. Internally, we are moving beyond using technology only to dominate nature towards making ourselves the template for technology, integrating technologies within ourselves physically. We don’t just use technology; we absorb it

The Hybrid Age is the transition period between the Information Age and the moment of Singularity (when machine surpass human intelligence) that inventor Ray Kurzweil estimates we may reach by 2040 (perhaps sooner). The Hybrid Age is a liminal phase in which we cross the threshold toward a new mode of arranging global society…

You may continue to live your life without understanding the implications of the still-distant Singularity, but you should not underestimate how quickly we are accelerating into the Hybrid Age – nor delay in managing this transition yourself

The dominant paradigm to explain global change in the Hybrid Age will be geotechnnology. Technology’s role in shaping and reshaping the prevailing order, and accelerating change between orders, forces us to rethink the intellectual hegemony of geopolitics and geoeconomics…

It is geotechnology that is the underlying driver of both: Mastery in the leading technology sectors of any era determines who leads in geoeconomics and dominates in geopolitics…

The shift towards a geotechnology paradigm forces us to jettison centuries of foundational assumptions of geopolitics. The first is our view on scale: “Bigger is better” is no longer necessarily true. Size can be as much a liability as an asset…

We live and die by our Technik, the capacity to harness emerging technologies to improve our circumstances…

We will increasingly differentiate societies on the basis not of their regime type or income, but of their capacity to harness technology. Societies that continuously upgrade their Technik will thrive…

Meeting the grand challenge of improving equity on a crowded planet requires spreading Technik more than it requires spreading democracy

And there’s lots more, applying the above themes to education, healthcare, “better than new” prosthetics, longevity and rejuvenation, 3D printing, digital currencies, personal entrepreneurship and workforce transformation, the diffusion of authority, the rise of smart cities and their empowered “city-zens”, augmented reality and enhanced personal avatars, robots and “avoiding robopocalypse”, and the prospect for a forthcoming “Pax Technologica”.

It makes me breathless just remembering all these themes – and how they time and again circle back on each other.

Footnote: Readers who are in the vicinity of London next Saturday (23rd June) are encouraged to attend the London Futurist / Humanity+ UK event “Hybrid Reality, with Ayesha Khanna”. Click on the links for more information.

3 June 2012

Super-technology and a possible renaissance of religion

Filed under: death, disruption, Humanity Plus, rejuveneering, religion, Singularity, UKH+ — David Wood @ 11:02 pm

“Any sufficiently advanced technology is indistinguishable from magic” – Arthur C. Clarke

Imagine that the human race avoids self-destruction and continues on the path of increased mastery of technology. Imagine that, as seems credible some time in the future, humans will eventually gain the ability to keep everyone alive indefinitely, in an environment of great abundance, variety, and  intrinsic interest.

That paradise may be a fine outcome for our descendants, but unless the pace of technology improvement becomes remarkably rapid, it seems to have little direct impact on our own lives. Or does it?

It may depend on exactly how much power our god-like descendants eventually acquire.  For example, here are two of the points from a radical vision of the future known as the Ten cosmist convictions:

  • 5) We will develop spacetime engineering and scientific “future magic” much beyond our current understanding and imagination.
  • 6) Spacetime engineering and future magic will permit achieving, by scientific means, most of the promises of religions — and many amazing things that no human religion ever dreamed. Eventually we will be able to resurrect the dead by “copying them to the future”.

Whoa! “Resurrect the dead”, by “copying them to the future”. How might that work?

In part, by collecting enormous amount of data about the past – reconstructing information from numerous sources. It’s similar to collecting data about far-distant stars using a very large array of radio telescopes. And in part, by re-embodying that data in a new environment, similar to copying running software onto a new computer, giving it a new lease of life.

Lots of questions can be asked about the details:

  • Can sufficient data really be gathered in the future, in the face of all the degradation commonly called “the second law of thermodynamics”, that would allow a sufficiently high-fidelity version of me (or anyone else) to be re-created?
  • If a future super-human collected lots of data about me and managed to get an embodiment of that data running on some future super-computer, would that really amount to resurrecting me, as opposed to creating a copy of me?

I don’t think anyone can confident about answers to such questions. But it’s at least conceivable that remarkably advanced technology of the future may allow positive answers.

In other words, it’s at least conceivable that our descendants will have the god-like ability to recreate us in the future, giving us an unexpected prospect for immortality.

This makes sense of the remark by radical futurist and singularitarian Ray Kurzweil at the end of the film “Transcendent Man“:

Does God exist? Well I would say, not yet

Other radical futurists quibble over the “not yet” caveat. In his recent essay “Yes, I am a believer“, Giulio Prisco takes the discussion one stage further:

Gods will exist in the future, and they may be able to affect their past — our present — by means of spacetime engineering. Probably other civilizations out there already attained God-like powers.

Giulio notes that even the celebrated critic of theism, Richard Dawkins, gives some support to this line of thinking.  For example, here’s an excerpt from a 2011 New York Times interview, in which Dawkins discusses an essay written by theoretic physicist Freeman Dyson:

In one essay, Professor Dyson casts millions of speculative years into the future. Our galaxy is dying and humans have evolved into something like bolts of superpowerful intelligent and moral energy.

Doesn’t that description sound an awful lot like God?

“Certainly,” Professor Dawkins replies. “It’s highly plausible that in the universe there are God-like creatures.”

He raises his hand, just in case a reader thinks he’s gone around a religious bend. “It’s very important to understand that these Gods came into being by an explicable scientific progression of incremental evolution.”

Could they be immortal? The professor shrugs.

“Probably not.” He smiles and adds, “But I wouldn’t want to be too dogmatic about that.”

As Giulio points out, Dawkins develops a similar line of argument in part of his book “The God Delusion”:

Whether we ever get to know them or not, there are very probably alien civilizations that are superhuman, to the point of being god-like in ways that exceed anything a theologian could possibly imagine. Their technical achievements would seem as supernatural to us as ours would seem to a Dark Age peasant transported to the twenty-first century…

In what sense, then, would the most advanced SETI aliens not be gods? In what sense would they be superhuman but not supernatural? In a very important sense, which goes to the heart of this book. The crucial difference between gods and god-like extraterrestrials lies not in their properties but in their provenance. Entities that are complex enough to be intelligent are products of an evolutionary process. No matter how god-like they may seem when we encounter them, they didn’t start that way…

Giulio seems more interested in the properties than the provenance. The fact that these entities have god-like powers prompts him to proclaim “Yes, I am a believer“.  He gives another reason in support of that proclamation: In contrast to the views of so-called militant atheists, Giulio is “persuaded that religion can be a powerful and positive force”.

Giulio sees this “powerful and positive force” as applying to him personally as well as to groups in general:

“In my beliefs I find hope, happiness, meaning, the strength to get through the night, and a powerful sense of wonder at our future adventures out there in the universe, which gives me also the drive to try to be a better person here-and-now on this little planet and make it a little better for future generations”.

More controversially, Giulio has taken to describing himself (e.g. on his Facebook page) as a “Christian”. Referring back to his essay, and to the ensuing online discussion:

Religion can, and should, be based on mutual tolerance, love and compassion. Jesus said: “love thy neighbor as thyself,” and added: “let he who is without sin, cast the first stone”…

This is the important part of his teachings in my opinion. Christian theology is interesting, but I think it should be reformulated for our times…

Was Jesus the Son of God? I don’t think this is a central issue. He certainly was, in the sense that we all are, and he may have been one of those persons in tune with the universe, more in tune with the universe than the rest of us, able to glimpse at veiled realities beyond our senses.

I’ve known Giulio for several years, from various Humanity+ and Singularity meetings we’ve both attended – dating back to “Transvision 2006” in Helsinki. I respect him as a very capable thinker, and I take his views seriously. His recent “Yes, I am a believer” article has stirred up a hornets’ nest of online criticism.

Accordingly, I was very pleased that Giulio accepted my invitation to come to London to speak at a London Futurist / Humanity+ UK meeting on Saturday 14th July: “Transhumanist Religions 2.0: New Cosmist religion and spirituality for our boundless future (and our troubled present)”. For all kinds of reason, this discussion deserves a wider airing.

First, I share the view that religious sentiments can provide cohesion and energy to propel individuals and groups to undertake enormously difficult projects (such as the project to avoid the self-destruction of the human race, or any drastic decline in the quality of global civilisation).  The best analysis I’ve read of this point is in the book “Darwin’s Cathedral: Evolution, Religion, and the Nature of Society” by David Sloan Wilson.  As I’ve written previously:

This book has sweeping scope, but makes its case very well.  The case is that religion has in general survived inasmuch as it helped groups of people to achieve greater cohesion and thereby acquire greater fitness compared to other groups of people.  This kind of religion has practical effect, independent of whether or not its belief system corresponds to factual reality.  (It can hardly be denied that, in most cases, the belief system does not correspond to factual reality.)

The book has some great examples – from the religions in hunter-gatherer societies, which contain a powerful emphasis on sharing out scarce resources completely equitably, through examples of religions in more complex societies.  The chapter on John Calvin was eye-opening (describing how his belief system brought stability and prosperity to Geneva) – as were the sections on the comparative evolutionary successes of Judaism and early Christianity.  But perhaps the section on the Balinese water-irrigation religion is the most fascinating of the lot.

Of course, there are some other theories for why religion exists (and is so widespread), and this book gives credit to these theories in appropriate places.  However, this pro-group selection explanation has never before been set out so carefully and credibly, and I think it’s no longer possible to deny that it plays a key role.

The discussion makes it crystal clear why many religious groups tend to treat outsiders so badly (despite treating insiders so well).  It also provides a fascinating perspective on the whole topic of “forgiveness”.  Finally, the central theme of “group selection” is given a convincing defence.

But second, there’s no doubt that religion can fit blinkers over people’s thinking abilities, and prevent them from weighing up arguments dispassionately. Whenever people talk about the Singularity movement as having the shape of a religion – with Ray Kurzweil as a kind of infallible prophet – I shudder. But we needn’t lurch to that extreme. We should be able to maintain the discipline of rigorous independent thinking within a technologically-informed renaissance of positive religious sentiment.

Third, if the universe really does have beings with God-like powers, what attitude should we adopt towards these beings? Should we be seeking in some way to worship them, or placate them, or influence them? It depends on whether these beings are able to influence human history, here and now, or whether they are instead restricted (by raw facts of space and time that even God-like beings have to respect) to observing us and (possibly) copying us into the future.

Personally my bet is on the latter choice. For example, I’m not convinced by people who claim evidence to the contrary. And if these beings did have the ability to intervene in human history, but have failed to do so, it would be evidence of them having scant interest in widespread intense human suffering. They would hardly be super-beings.

In that case, the focus of our effort should remain squarely on building the right conditions for super-technology to benefit humanity as a whole (this is the project I call “Inner Humanity+“), rather than on somehow seeking to attract the future attention of these God-like beings. But no doubt others will have different views!

16 October 2011

Human regeneration – limbs and more

Filed under: healthcare, medicine, rejuveneering, risks, Singularity — David Wood @ 1:57 am

Out of the many interesting presentations on Day One of the 2011 Singularity Summit here in New York, the one that left me with the most to think about was “Regenerative Medicine: Possibilities and Potential” by Dr. Stephen Badylak.

Dr Badylak is deputy director of the McGowan Institute for Regenerative Medicine, and a Professor in the Department of Surgery at the University of Pittsburg. In his talk at the Singularity Summit, he described some remarkable ways in which the human body could heal itself – provided we provide it with suitable “scaffolding” that triggers the healing.

One of the examples Dr Badylak discussed is also covered in a recent article in Discover Magazine, How Pig Guts Became the Next Bright Hope for Regenerating Human Limbs.  The article deserves reading all the way through. Here are some short extracts from the beginning:

When he first arrived in the trauma unit of San Antonio’s Brooke Army Medical Center in December 2004, Corporal Isaias Hernandez’s leg looked to him like something from KFC. “You know, like when you take a bite out of the drumstick down to the bone?” Hernandez recalls. The 19-year-old Marine, deployed in Iraq, had been trying to outfit his convoy truck with a makeshift entertainment system for a long road trip when the bomb exploded. The 12-inch TV he was clutching to his chest shielded his vital organs; his buddy carrying the DVDs wasn’t so lucky.

The doctors kept telling Hernandez he would be better off with an amputation. He would have more mobility with a prosthetic, less pain. When he refused, they took a piece of muscle from his back and sewed it into the hole in his thigh. He did all he could to make it work. He grunted and sweated his way through the agony of physical therapy with the same red-faced determination that got him through boot camp. He even sneaked out to the stairwell, something they said his body couldn’t handle, and dragged himself up the steps until his leg seized up and he collapsed.

Generally people never recovered from wounds like his. Flying debris had ripped off nearly 70 percent of Hernandez’s right thigh muscle, and he had lost half his leg strength. Remove enough of any muscle and you might as well lose the whole limb, the chances of regeneration are so remote. The body kicks into survival mode, pastes the wound over with scar tissue, and leaves you to limp along for life….

Hernandez recalled that one of his own doctors—Steven Wolf, then chief clinical researcher for the United States Army Institute of Surgical Research in Texas—had once mentioned some kind of experimental treatment that could “fertilize” a wound and help it heal. At the time, Hernandez had dismissed the therapy as too extreme. The muscle transplant sounded safer, easier. Now he changed his mind. He wanted his leg back, even if it meant signing himself up as a guinea pig for the U.S. Army.

So Hernandez tracked down Wolf, and in February 2008 the two got started. First, Wolf put Hernandez through another grueling course of physical therapy to make sure he had indeed pushed any new muscle growth to the limit. Then he cut open Hernandez’s thigh and inserted a paper-thin slice of the same material used to make the pixie dust: part of a pig’s bladder known as the extracellular matrix, or ECM, a fibrous substance that occupies the spaces between cells. Once thought to be a simple cellular shock absorber, ECM is now understood to contain powerful proteins that can reawaken the body’s latent ability to regenerate tissue.

A few months after the surgery healed, Wolf assigned the young soldier another course of punishing physical therapy. Soon something remarkable began to happen. Muscle that most scientists would describe as gone forever began to grow back. Hernandez’s muscle strength increased by 30 percent from what it was before the surgery, and then by 40 percent. It hit 80 percent after six months. Today it is at 103 percent—as strong as his other leg. Hernandez can do things that were impossible before, like ease gently into a chair instead of dropping into it, or kneel down, ride a bike, and climb stairs without collapsing, all without pain

The challenge now is replicating Hernandez’s success in other patients. The U.S. Department of Defense, which received a congressional windfall of $80 million to research regenerative medicine in 2008, is funding a team of scientists based at the University of Pittsburgh’s McGowan Institute for Regenerative Medicine to oversee an 80-patient study of ECM at five institutions. The scientists will attempt to use the material to regenerate the muscle of patients who have lost at least 40 percent of a particular muscle group, an amount so devastating to limb function that it often leads doctors to perform an amputation.

If the trials are successful, they could fundamentally change the way we treat patients with catastrophic limb injuries. Indeed, the treatment might someday allow patients to regrow missing or mangled body parts. With an estimated 1.7 million people in the United States alone missing limbs, promoters of regenerative medicine eagerly await the day when therapies like ECM work well enough to put the prosthetics industry out of business.

The interesting science is the explanation of the role of the ECM – the extracellular matrix, which provides the scaffolding that allows the healing to take place. The healing turns out to involve the body directing stem cells to the scaffolding. These stem cells then differentiate into muscle cells, nerve cells, blood cells, and so on. There’s also some interesting science to explain why the body doesn’t reject the ECM that’s inserted into it.

Badylak speaks with confidence of the treatment one day allowing the regeneration of damaged human limbs, akin to what happens with salamanders.  He also anticipates the healing of brain tissue damaged by strokes.

Later that morning, another speaker at the Singularity Summit, Michael Shermer, referred to Dr Badylak’s presentation. Shermer is a well-known sceptic – indeed, he’s the publisher of Skeptic magazine.  Shermer often participates in public debates with believers in various religions and new-age causes.  Shermer mentioned that, at these debates, his scientific open mindedness is sometimes challenged.  “OK, if you are open-minded, as you claim, what evidence would make you believe in God?”  Shermer typically gives the answer that, if someone with an amputated limb were to have that limb regrow, that would be reason for him to become a believer:

Most religious claims are testable, such as prayer positively influencing healing. In this case, controlled experiments to date show no difference between prayed-for and not-prayed-for patients. And beyond such controlled research, why does God only seem to heal illnesses that often go away on their own? What would compel me to believe would be something unequivocal, such as if an amputee grew a new limb. Amphibians can do it. Surely an omnipotent deity could do it. Many Iraqi War vets eagerly await divine action.

However, Shermer joked with the Singularity Summit audience, it now appears that Dr Badylak might be God.  The audience laughed.

But there’s a serious point at stake here. The Singularity Summit is full of talks about humans being on the point of gaining powers that, in previous ages, would have been viewed as Divine. With great power comes great responsibility. As veteran ecologist and environmentalist Stewart Brand wrote at the very start of his recent book “Whole Earth Discipline“,

We are as gods and HAVE to get good at it.

In the final talk of the day, cosmologist Professor Max Tegmark addressed the same theme.  He gave an estimate of “between 1/10 and 1/10,000” for the probability of human extinction during any decade in the near-term future – extinction arising from (for example) biochemical warfare, runaway global warming, nanotech pollution, or a bad super-intelligence singularity. In contrast, he said, only a tiny fraction of the global GDP is devoted to management of existential risks.  That kind of “lack of paying attention” meant that humanity deserved, in Tegmark’s view, a “mid-term rating” of just D-.  Our focus, far too much of the time, is on the next election cycle, or the next quarterly financial results, or other short term questions.

One person who is seeking to encourage greater attention to be paid to existential risks is co-founder of Skype, Jaan Tallinn (who earlier in the year gave a very fine talk at a Humanity+ event I organised in London).  Jaan’s main presentation at the 2011 Singularity Summit will be on Day Two, but he briefly popped up on stage on Day One to announce a significant new fundraising commitment: he will personally match any donations made over the weekend to the Singularity Institute, up to a total of $100,000.

With the right resources, wisely deployed, we ought to see collective human intelligence achieve lots more regeneration – not just of broken limbs, but also of troubled societies and frustrated lives – whilst at the same time steering humanity away from the existential risks latent in these super-powerful technologies.  The discussion will continue tomorrow.

31 December 2010

Welcome 2011 – what will the future hold?

Filed under: aging, futurist, Humanity Plus, intelligence, rejuveneering — David Wood @ 6:42 pm

As 2010 turns into 2011, let me offer some predictions about topics that will increasingly be on people’s minds, as 2011 advances.

(Spoiler: these are all topics that will feature as speaker presentations at the Humanity+ UK 2011 conference that I’m organising in London’s Conway Hall on 29th January.  At time of writing, I’m still waiting to confirm possibly one or two more speakers for this event, but registration is already open.)

Apologies for omitting many other key emerging tech-related trends from this list.  If there’s something you care strongly about – and if you live within striking distance of London – you’ll be more than welcome to join the discussion on 29th January!

« Newer Posts

Blog at WordPress.com.