dw2

11 April 2015

Opening Pandora’s box

Should some conversations be suppressed?

Are there ideas which could prove so incendiary, and so provocative, that it would be better to shut them down?

Should some concepts be permanently locked into a Pandora’s box, lest they fly off and cause too much chaos in the world?

As an example, consider this oft-told story from the 1850s, about the dangers of spreading the idea of that humans had evolved from apes:

It is said that when the theory of evolution was first announced it was received by the wife of the Canon of Worcester Cathedral with the remark, “Descended from the apes! My dear, we will hope it is not true. But if it is, let us pray that it may not become generally known.”

More recently, there’s been a growing worry about spreading the idea that AGI (Artificial General Intelligence) could become an apocalyptic menace. The worry is that any discussion of that idea could lead to public hostility against the whole field of AGI. Governments might be panicked into shutting down these lines of research. And self-appointed militant defenders of the status quo might take up arms against AGI researchers. Perhaps, therefore, we should avoid any public mention of potential downsides of AGI. Perhaps we should pray that these downsides don’t become generally known.

tumblr_static_transcendence_rift_logoThe theme of armed resistance against AGI researchers features in several Hollywood blockbusters. In Transcendence, a radical anti-tech group named “RIFT” track down and shoot the AGI researcher played by actor Johnny Depp. RIFT proclaims “revolutionary independence from technology”.

As blogger Calum Chace has noted, just because something happens in a Hollywood movie, it doesn’t mean it can’t happen in real life too.

In real life, “Unabomber” Ted Kaczinski was so fearful about the future destructive potential of technology that he sent 16 bombs to targets such as universities and airlines over the period 1978 to 1995, killing three people and injuring 23. Kaczinski spelt out his views in a 35,000 word essay Industrial Society and Its Future.

Kaczinki’s essay stated that “the Industrial Revolution and its consequences have been a disaster for the human race”, defended his series of bombings as an extreme but necessary step to attract attention to how modern technology was eroding human freedom, and called for a “revolution against technology”.

Anticipating the next Unabombers

unabomber_ely_coverThe Unabomber may have been an extreme case, but he’s by no means alone. Journalist Jamie Bartlett takes up the story in a chilling Daily Telegraph article “As technology swamps our lives, the next Unabombers are waiting for their moment”,

In 2011 a new Mexican group called the Individualists Tending toward the Wild were founded with the objective “to injure or kill scientists and researchers (by the means of whatever violent act) who ensure the Technoindustrial System continues its course”. In 2011, they detonated a bomb at a prominent nano-technology research centre in Monterrey.

Individualists Tending toward the Wild have published their own manifesto, which includes the following warning:

We employ direct attacks to damage both physically and psychologically, NOT ONLY experts in nanotechnology, but also scholars in biotechnology, physics, neuroscience, genetic engineering, communication science, computing, robotics, etc. because we reject technology and civilisation, we reject the reality that they are imposing with ALL their advanced science.

Before going any further, let’s agree that we don’t want to inflame the passions of would-be Unabombers, RIFTs, or ITWs. But that shouldn’t lead to whole conversations being shut down. It’s the same with criticism of religion. We know that, when we criticise various religious doctrines, it may inflame jihadist zeal. How dare you offend our holy book, and dishonour our exalted prophet, the jihadists thunder, when they cannot bear to hear our criticisms. But that shouldn’t lead us to cowed silence – especially when we’re aware of ways in which religious doctrines are damaging individuals and societies (by opposition to vaccinations or blood transfusions, or by denying female education).

Instead of silence (avoiding the topic altogether), what these worries should lead us to is a more responsible, inclusive, measured conversation. That applies for the drawbacks of religion. And it applies, too, for the potential drawbacks of AGI.

Engaging conversation

The conversation I envisage will still have its share of poetic effect – with risks and opportunities temporarily painted more colourfully than a fully sober evaluation warrants. If we want to engage people in conversation, we sometimes need to make dramatic gestures. To squeeze a message into a 140 character-long tweet, we sometimes have to trim the corners of proper spelling and punctuation. Similarly, to make people stop in their tracks, and start to pay attention to a topic that deserves fuller study, some artistic license may be appropriate. But only if that artistry is quickly backed up with a fuller, more dispassionate, balanced analysis.

What I’ve described here is a two-phase model for spreading ideas about disruptive technologies such as AGI:

  1. Key topics can be introduced, in vivid ways, using larger-than-life characters in absorbing narratives, whether in Hollywood or in novels
  2. The topics can then be rounded out, in multiple shades of grey, via film and book reviews, blog posts, magazine articles, and so on.

Since I perceive both the potential upsides and the potential downsides of AGI as being enormous, I want to enlarge the pool of people who are thinking hard about these topics. I certainly don’t want the resulting discussion to slide off to an extreme point of view which would cause the whole field of AGI to be suspended, or which would encourage active sabotage and armed resistance against it. But nor do I want the discussion to wither away, in a way that would increase the likelihood of adverse unintended outcomes from aberrant AGI.

Welcoming Pandora’s Brain

cropped-cover-2That’s why I welcome the recent publication of the novel “Pandora’s Brain”, by the above-mentioned blogger Calum Chace. Pandora’s Brain is a science and philosophy thriller that transforms a series of philosophical concepts into vivid life-and-death conundrums that befall the characters in the story. Here’s how another science novellist, William Hertling, describes the book:

Pandora’s Brain is a tour de force that neatly explains the key concepts behind the likely future of artificial intelligence in the context of a thriller novel. Ambitious and well executed, it will appeal to a broad range of readers.

In the same way that Suarez’s Daemon and Naam’s Nexus leaped onto the scene, redefining what it meant to write about technology, Pandora’s Brain will do the same for artificial intelligence.

Mind uploading? Check. Human equivalent AI? Check. Hard takeoff singularity? Check. Strap in, this is one heck of a ride.

Mainly set in the present day, the plot unfolds in an environment that seems reassuringly familiar, but which is overshadowed by a combination of both menace and promise. Carefully crafted, and absorbing from its very start, the book held my rapt attention throughout a series of surprise twists, as various personalities react in different ways to a growing awareness of that menace and promise.

In short, I found Pandora’s Brain to be a captivating tale of developments in artificial intelligence that could, conceivably, be just around the corner. The imminent possibility of these breakthroughs cause characters in the book to re-evaluate many of their cherished beliefs, and will lead most readers to several “OMG” realisations about their own philosophies of life. Apple carts that are upended in the processes are unlikely ever to be righted again. Once the ideas have escaped from the pages of this Pandora’s box of a book, there’s no going back to a state of innocence.

But as I said, not everyone is enthralled by the prospect of wider attention to the “menace” side of AGI. Each new novel or film in this space has the potential of stirring up a negative backlash against AGI researchers, potentially preventing them from doing the work that would deliver the powerful “promise” side of AGI.

The dual potential of AGI

FLIThe tremendous dual potential of AGI was emphasised in an open letter published in January by the Future of Life Institute:

There is now a broad consensus that AI research is progressing steadily, and that its impact on society is likely to increase. The potential benefits are huge, since everything that civilization has to offer is a product of human intelligence; we cannot predict what we might achieve when this intelligence is magnified by the tools AI may provide, but the eradication of disease and poverty are not unfathomable. Because of the great potential of AI, it is important to research how to reap its benefits while avoiding potential pitfalls.

“The eradication of disease and poverty” – these would be wonderful outcomes from the project to create AGI. But the lead authors of that open letter, including physicist Stephen Hawking and AI professor Stuart Russell, sounded their own warning note:

Success in creating AI would be the biggest event in human history. Unfortunately, it might also be the last, unless we learn how to avoid the risks. In the near term, world militaries are considering autonomous-weapon systems that can choose and eliminate targets; the UN and Human Rights Watch have advocated a treaty banning such weapons. In the medium term, as emphasised by Erik Brynjolfsson and Andrew McAfee in The Second Machine Age, AI may transform our economy to bring both great wealth and great dislocation…

One can imagine such technology outsmarting financial markets, out-inventing human researchers, out-manipulating human leaders, and developing weapons we cannot even understand. Whereas the short-term impact of AI depends on who controls it, the long-term impact depends on whether it can be controlled at all.

They followed up with this zinger:

So, facing possible futures of incalculable benefits and risks, the experts are surely doing everything possible to ensure the best outcome, right? Wrong… Although we are facing potentially the best or worst thing to happen to humanity in history, little serious research is devoted to these issues outside non-profit institutes… All of us should ask ourselves what we can do now to improve the chances of reaping the benefits and avoiding the risks.

Criticisms

Critics give a number of reasons why they see these fears as overblown. To start with, they argue that the people raising the alarm – Stephen Hawking, serial entrepreneur Elon Musk, Oxford University philosophy professor Nick Bostrom, and so on – lack their own expertise in AGI. They may be experts in black hole physics (Hawking), or in electric cars (Musk), or in academic philosophy (Bostrom), but that gives them no special insights into the likely course of development of AGI. Therefore we shouldn’t pay particular attention to what they say.

A second criticism is that it’s premature to worry about the advent of AGI. AGI is still situated far into the future. In this view, as stated by Demis Hassabis, founder of DeepMind,

We’re many, many decades away from anything, any kind of technology that we need to worry about.

The third criticism is that it will be relatively simple to stop AGI causing any harm to humans. AGI will be a tool to humans, under human control, rather than having its own autonomy. This view is represented by this tweet by science populariser Neil deGrasse Tyson:

Seems to me, as long as we don’t program emotions into Robots, there’s no reason to fear them taking over the world.

I hear all these criticisms, but they’re by no means the end of the discussion. They’re no reason to terminate the discussion about AGI risks. That’s the argument I’m going to make in the remainder of this blogpost.

By the way, you’ll find all these of these criticisms mirrored in the course of the novel Pandora’s Brain. That’s another reason I recommend that people should read that book. It manages to bring a great deal of serious arguments to the table, in the course of entertaining (and sometimes frightening) the reader.

Answering the criticisms: personnel

Elon Musk, one of the people who have raised the alarm about AGI risks, lacks any PhD in Artificial Intelligence to his name. It’s the same with Stephen Hawking and with Nick Bostrom. On the other hand, others who are raising the alarm do have relevant qualifications.

AI a modern approachConsider as just one example Stuart Russell, who is a computer-science professor at the University of California, Berkeley and co-author of the 1152-page best-selling text-book “Artificial Intelligence: A Modern Approach”. This book is described as follows:

Artificial Intelligence: A Modern Approach, 3rd edition offers the most comprehensive, up-to-date introduction to the theory and practice of artificial intelligence. Number one in its field, this textbook is ideal for one or two-semester, undergraduate or graduate-level courses in Artificial Intelligence.

Moreover, other people raising the alarm include some the giants of the modern software industry:

Wozniak put his worries as follows – in an interview for the Australian Financial Review:

“Computers are going to take over from humans, no question,” Mr Wozniak said.

He said he had long dismissed the ideas of writers like Raymond Kurzweil, who have warned that rapid increases in technology will mean machine intelligence will outstrip human understanding or capability within the next 30 years. However Mr Wozniak said he had come to recognise that the predictions were coming true, and that computing that perfectly mimicked or attained human consciousness would become a dangerous reality.

“Like people including Stephen Hawking and Elon Musk have predicted, I agree that the future is scary and very bad for people. If we build these devices to take care of everything for us, eventually they’ll think faster than us and they’ll get rid of the slow humans to run companies more efficiently,” Mr Wozniak said.

“Will we be the gods? Will we be the family pets? Or will we be ants that get stepped on? I don’t know about that…

And here’s what Bill Gates said on the matter, in an “Ask Me Anything” session on Reddit:

I am in the camp that is concerned about super intelligence. First the machines will do a lot of jobs for us and not be super intelligent. That should be positive if we manage it well. A few decades after that though the intelligence is strong enough to be a concern. I agree with Elon Musk and some others on this and don’t understand why some people are not concerned.

Returning to Elon Musk, even his critics must concede he has shown remarkable ability to make new contributions in areas of technology outside his original specialities. Witness his track record with PayPal (a disruption in finance), SpaceX (a disruption in rockets), and Tesla Motors (a disruption in electric batteries and electric cars). And that’s even before considering his contributions at SolarCity and Hyperloop.

Incidentally, Musk puts his money where his mouth is. He has donated $10 million to the Future of Life Institute to run a global research program aimed at keeping AI beneficial to humanity.

I sum this up as follows: the people raising the alarm in recent months about the risks of AGI have impressive credentials. On occasion, their sound-bites may cut corners in logic, but they collectively back up these sound-bites with lengthy books and articles that deserve serious consideration.

Answering the criticisms: timescales

I have three answers to the comment about timescales. The first is to point out that Demis Hassabis himself sees no reason for any complacency, on account of the potential for AGI to require “many decades” before it becomes a threat. Here’s the fuller version of the quote given earlier:

We’re many, many decades away from anything, any kind of technology that we need to worry about. But it’s good to start the conversation now and be aware of as with any new powerful technology it can be used for good or bad.

(Emphasis added.)

Second, the community of people working on AGI has mixed views on timescales. The Future of Life Institute ran a panel discussion in Puerto Rico in January that addressed (among many other topics) “Creating human-level AI: how and when”. Dileep George of Vicarious gave the following answer about timescales in his slides (PDF):

Will we solve the fundamental research problems in N years?

N <= 5: No way
5 < N <= 10: Small possibility
10 < N <= 20: > 50%.

In other words, in his view, there’s a greater than 50% chance that artificial general human-level intelligence will be solved within 20 years.

SuperintelligenceThe answers from the other panellists aren’t publicly recorded (the event was held under Chatham House rules). However, Nick Bostrom has conducted several surveys among different communities of AI researchers. The results are included in his book Superintelligence: Paths, Dangers, Strategies. The communities surveyed included:

  • Participants at an international conference: Philosophy & Theory of AI
  • Participants at another international conference: Artificial General Intelligence
  • The Greek Association for Artificial Intelligence
  • The top 100 cited authors in AI.

In each case, participants were asked for the dates when they were 90% sure human-level AGI would be achieved, 50% sure, and 10% sure. The average answers were:

  • 90% likely human-level AGI is achieved: 2075
  • 50% likely: 2040
  • 10% likely: 2022.

If we respect what this survey says, there’s at least a 10% chance of breakthrough developments within the next ten years. Therefore it’s no real surprise that Hassabis says

It’s good to start the conversation now and be aware of as with any new powerful technology it can be used for good or bad.

Third, I’ll give my own reasons for why progress in AGI might speed up:

  • Computer hardware is likely to continue to improve – perhaps utilising breakthroughs in quantum computing
  • Clever software improvements can increase algorithm performance even more than hardware improvements
  • Studies of the human brain, which are yielding knowledge faster than ever before, can be translated into “neuromorphic computing”
  • More people are entering and studying AI than ever before, in part due to MOOCs, such as that from Stanford University
  • There are more software components, databases, tools, and methods available for innovative recombination
  • AI methods are being accelerated for use in games, financial trading, malware detection (and in malware itself), and in many other industries
  • There could be one or more “Sputnik moments” causing society to buckle up its motivation to more fully support AGI research (especially when AGI starts producing big benefits in healthcare diagnosis).

Answering the critics: control

I’ve left the hardest question to last. Could there be relatively straightforward ways to keep AGI under control? For example, would it suffice to avoid giving AGI intentions, or emotions, or autonomy?

For example, physics professor and science populariser Michio Kaku speculates as follows:

No one knows when a robot will approach human intelligence, but I suspect it will be late in the 21st century. Will they be dangerous? Possibly. So I suggest we put a chip in their brain to shut them off if they have murderous thoughts.

And as mentioned earlier, Neil deGrasse Tyson proposes,

As long as we don’t program emotions into Robots, there’s no reason to fear them taking over the world.

Nick Bostrom devoted a considerable portion of his book to this “Control problem”. Here are some reasons I think we need to continue to be extremely careful:

  • Emotions and intentions might arise unexpectedly, as unplanned side-effects of other aspects of intelligence that are built into software
  • All complex software tends to have bugs; it may fail to operate in the way that we instruct it
  • The AGI software will encounter many situations outside of those we explicitly anticipated; the response of the software in these novel situations may be to do “what we asked it to do” but not what we would have wished it to do
  • Complex software may be vulnerable to having its functionality altered, either by external hacking, or by well-intentioned but ill-executed self-modification
  • Software may find ways to keep its inner plans hidden – it may have “murderous thoughts” which it prevents external observers from noticing
  • More generally, black-box evolution methods may result in software that works very well in a large number of circumstances, but which will go disastrously wrong in new circumstances, all without the actual algorithms being externally understood
  • Powerful software can have unplanned adverse effects, even without any consciousness or emotion being present; consider battlefield drones, infrastructure management software, financial investment software, and nuclear missile detection software
  • Software may be designed to be able to manipulate humans, initially for purposes akin to advertising, or to keep law and order, but these powers may evolve in ways that have worse side effects.

A new Columbus?

christopher-columbus-shipsA number of the above thoughts started forming in my mind as I attended the Singularity University Summit in Seville, Spain, a few weeks ago. Seville, I discovered during my visit, was where Christopher Columbus persuaded King Ferdinand and Queen Isabella of Spain to fund his proposed voyage westwards in search of a new route to the Indies. It turns out that Columbus succeeded in finding the new continent of America only because he was hopelessly wrong in his calculation of the size of the earth.

From the time of the ancient Greeks, learned observers had known that the earth was a sphere of roughly 40 thousand kilometres in circumference. Due to a combination of mistakes, Columbus calculated that the Canary Islands (which he had often visited) were located only about 4,440 km from Japan; in reality, they are about 19,000 km apart.

Most of the countries where Columbus pitched the idea of his westward journey turned him down – believing instead the figures for the larger circumference of the earth. Perhaps spurred on by competition with the neighbouring Portuguese (who had, just a few years previously, successfully navigated to the Indian ocean around the tip of Africa), the Spanish king and queen agreed to support his adventure. Fortunately for Columbus, a large continent existed en route to Asia, allowing him landfall. And the rest is history. That history included the near genocide of the native inhabitants by conquerors from Europe. Transmission of European diseases compounded the misery.

It may be the same with AGI. Rational observers may have ample justification in thinking that true AGI is located many decades in the future. But this fact does not deter a multitude of modern-day AGI explorers from setting out, Columbus-like, in search of some dramatic breakthroughs. And who knows what intermediate forms of AI might be discovered, unexpectedly?

It all adds to the argument for keeping our wits fully about us. We should use every means at our disposal to think through options in advance. This includes well-grounded fictional explorations, such as Pandora’s Brain, as well as the novels by William Hertling. And it also includes the kinds of research being undertaken by the Future of Life Institute and associated non-profit organisations, such as CSER in Cambridge, FHI in Oxford, and MIRI (the Machine Intelligence Research Institute).

Let’s keep this conversation open – it’s far too important to try to shut it down.

Footnote: Vacancies at the Centre for the Study of Existential Risk

I see that the Cambridge University CSER (Centre for the Study of Existential Risk) have four vacancies for Research Associates. From the job posting:

Up to four full-time postdoctoral research associates to work on the project Towards a Science of Extreme Technological Risk (ETR) within the Centre for the Study of Existential Risk (CSER).

CSER’s research focuses on the identification, management and mitigation of possible extreme risks associated with future technological advances. We are currently based within the University’s Centre for Research in the Arts, Social Sciences and Humanities (CRASSH). Our goal is to bring together some of the best minds from academia, industry and the policy world to tackle the challenges of ensuring that powerful new technologies are safe and beneficial. We focus especially on under-studied high-impact risks – risks that might result in a global catastrophe, or even threaten human extinction, even if only with low probability.

The closing date for applications is 24th April. If you’re interested, don’t delay!

15 February 2015

Ten years of quantified self

Filed under: books, healthcare — Tags: , , , , , , , — David Wood @ 12:02 am

Ten years. Actually 539 weeks. I’ve been recording my weight every morning from 23 October 2004, and adding a new data point to my chart every weekend.

10 years of Quantified Self

I’ve been recording my weight ever since I read that people who monitor their weight on a regular basis are more likely to avoid it ballooning upwards. There’s an instant feedback which allows me to seek adjustments in my personal health regime. With ten years of experience under my (varyingly-sized) belt, I’m strongly inclined to continue the experiment.

The above chart started life on my Psion Series 5mx PDA. Week after week, I added data, and watched as the chart expanded. Eventually, the graph hit the limits of what could be displayed on a single screen on the S5mx (width = 480 pixels), so I had to split the chart into two. And then three. Finally, after a number of hardware failures in my stock of S5mx devices, I transferred the data into an Excel spreadsheet on my laptop several months ago. Among other advantages, it once again lets me see the entire picture.

20150214_084625This morning, 14th Feb 2015, I saw the scales dip down to a point I had last reached in September 2006. This result seems to confirm the effectiveness of my latest dietary regime – which I’ve been following since July. Over these seven months, I’ve shrunk from a decidedly unhealthy (and unsightly) 97 kg down to 81 kg.

In terms of the BMI metric (Body Mass Index), that’s a reduction from 31.2 – officially “obese” – down to 26.4. 26.4 is still “marginally overweight”, since, for men, the top end of the BMI scale for a “healthy weight for adults” is 24.9. With my height, that would mean a weight of 77 kg. So there’s still a small journey for me to travel. But I’m happy to celebrate this incremental improvement!

The NHS page on BMI issues this sobering advice:

BMI of 30 or more: a BMI above 30 is classified as obese. Being obese puts you at a raised risk of health problems such as heart disease, stroke and type 2 diabetes. Losing weight will bring significant health improvements..

BMI score of 25 or more: your BMI is above the ideal range and this score means you may be overweight. This means that you’re heavier than is healthy for someone of your height. Excess weight can put you at increased risk of heart disease, stroke and type 2 diabetes. It’s time to take action…

As the full chart of my weight over the last ten years shows, I’ve had three major attempts at “action” to achieve a healthier body mass.

The first: For a while in 2004 and 2005, I restricted myself to two Herbalife meal preparations a day – even when I was travelling.

Later, in 2011, I ran across the book by Gary Taubes, “Why We Get Fat: And What to Do About It”, which made a great deal of sense to me. Taubes emphasises that some kinds of calories are more damaging to health than others. Specifically, carbohydrates, such as wheat, change the body metabolism to make it retain more weight. I also read “Wheat belly” by William Davis. Here’s an excerpt from the description of that book:

Renowned cardiologist William Davis explains how eliminating wheat from our diets can prevent fat storage, shrink unsightly bulges and reverse myriad health problems.

Every day we eat food products made of wheat. As a result millions of people experience some form of adverse health effect, ranging from minor rashes and high blood sugar to the unattractive stomach bulges that preventative cardiologist William Davis calls ‘wheat bellies’. According to Davis, that fat has nothing to do with gluttony, sloth or too much butter: it’s down to the whole grain food products so many people eat for breakfast, lunch and dinner.

After witnessing over 2,000 patients regain their health after giving up wheat, Davis reached the disturbing conclusion that wheat is the single largest contributor to the nationwide obesity epidemic – and its elimination is key to dramatic weight loss and optimal health.

In Wheat Belly, Davis exposes the harmful effects of what is actually a product of genetic tinkering being sold to the public as ‘wheat’ and provides readers with a user-friendly, step-by-step plan to navigate a new, wheat-free lifestyle. Benefits include: substantial weight loss, correction of cholesterol abnormalities, relief from arthritis, mood benefits and prevention of heart disease.

As a result, I cut back on carbohydrates – and was pleased to see my weight plummet once again. For a while – until I re-acquired many of my former carb-enjoying habits, whoops.

That takes me to regime number three. This time, I’ve followed the more recent trend known as “5+2”. According to this idea, people can eat normally for, say, five days in the week, and then eat a very reduced amount of calories on the other two days (known as “fasting days”). My initial worry about this approach was that I wasn’t sure I’d eat sensible foods on the two low-calorie days.

That’s when I ran across the meal preparations of the LighterLife company. These include soups, shakes, savoury meals, porridge, and bars. Each of these meals is just 150-200 calories. LighterLife suggest that people eat, on their low-calorie days, four of these meals. These preparations include sufficient proteins, fibre, and 100% of the recommended daily intake of key vitamins and minerals.

To be clear, I am not a medical doctor, and I urge anyone who is considering adopting a diet to obtain their own medical advice. I also recognise that different people have different metabolisms, so a diet that works for one person won’t necessarily work for someone else. However, I can share my own personal experience, in case it inspires others to do their own research:

  • Instead of 5+2, I generally follow 3+4. That is, I have four low-calorie days each week, along with three other days in which I tend to indulge myself (except that, on these other days, I still try to avoid consuming too many carbs, such as wheat, bread, rice, and potatoes)
  • On the low-calorie days, I generally eat around 11.30am, 2.30pm, 5.30pm, and 8.30pm
  • If I’m working at home, I’ll include soups, a savoury meal, and shakes; if I’m away from home, I’ll eat three (or four) different bars, that I pack into my back-pack at the beginning of the day
  • On the low-calorie days, it’s important to drink as well as to eat, but I avoid any drinks with calories in them. In practice, I find drinks of herbal teas to be very effective at dulling any sense of hunger I’m experiencing
  • In addition to eating less, I continue to do a lot of walking (e.g. between Waterloo Station and meeting locations in Central London), as well as other forms of exercise (like on the golf driving range or golf course).

Note: I know that BMI is far from being a complete representation of personal healthiness. However, I view it as a good starting point.

To round off my recommendations for diet-related books that I have particularly enjoyed reading, I’ll add “Mindless eating” by Brian Wansink to the two I mentioned earlier. I listened to the Audible version of that book. It’s hilarious, but thought-provoking, and the research it describes seems very well founded:

Every day, we each make around 200 decisions about eating. But studies have shown that 90% of these decisions are made without any conscious choice. Dr Brian Wansink lays bare the facts about our true eating habits to show that awareness of our patterns can allow us to lose weight effectively and without serious changes to our lives. Dr Wansink’s revelations include:

  • Food mistakes we all make in restaurants, supermarkets and at home
  • How we are manipulated by brand, appearance and parental habits more than price and our choices
  • Our emotional relationship with food and how we can overcome it to revitalise our diets.

Forget calorie counting and starving yourself and learn the truth about why we overeat in this fascinating, innovative guide.

Three books

I’ll finish by thanking my friends, family, and colleagues for their gentle and thoughtful encouragement, over the years, for me to keep an eye on my body mass, and on the general goodness of what I eat. “Health is the first wealth”.

7 September 2014

Beyond ‘Smartphones and beyond’

You techno-optimists don’t understand how messy real-life projects are. You over-estimate the power of technology, and under-estimate factors such as sociology, psychology, economics, and biology – not to mention the cussed awkwardness of Murphy’s Law.

That’s an example of the kind of retort that has frequently come to my ears in the last few years. I have a lot of sympathy for that retort.

I don’t deny being an optimist about what technology can accomplish. As I see things:

  • Human progress has taken place by the discovery and adoption of engineering solutions – such as fire, the wheel, irrigation, sailing ships, writing, printing, the steam engine, electricity, domestic kitchen appliances, railways and automobiles, computers and the Internet, plastics, vaccinations, anaesthetic, contraception, and better hygiene
  • Forthcoming technological improvements can propel human experience onto an even higher plane – with our minds and bodies both being dramatically enhanced
  • As well as making us stronger and smarter, new technology can help us become kinder, more collaborative, more patient, more empathetic, less parochial, and more aware of our cognitive biases and blindspots.

But equally, I see lots of examples of technology failing to live up to the expectations of techno-optimists. It’s not just that technology is a two-edged sword, and can scar as well as salve. And it’s not just that technology is often mis-employed in search of a “techno-solution” when a piece of good old-fashioned common sense could result in a better approach. It’s that new technologies – whether ideas for new medical cures, new sustainable energy sources, improved AI algorithms, and so on – often take considerably longer than expected to create useful products. Moreover, these products often have weaker features or poorer quality than anticipated.

Here’s an example of technology slowdown. A 2012 article in Nature coined the clever term “Eroom’s Law” to describe a steady decline in productivity of R&D research in new drug discovery:

Diagnosing the decline in pharmaceutical R&D efficiency

Jack W. Scannell, Alex Blanckley, Helen Boldon & Brian Warrington

The past 60 years have seen huge advances in many of the scientific, technological and managerial factors that should tend to raise the efficiency of commercial drug research and development (R&D). Yet the number of new drugs approved per billion US dollars spent on R&D has halved roughly every 9 years since 1950, falling around 80-fold in inflation-adjusted terms.

In other words, although the better-known Moore’s Law describes a relatively steady increase in computational power, Eroom’s Law describes a relatively steady decrease in the effectiveness of research and development within the pharmaceutical industry. By the way, Eroom isn’t a person: it’s Moore spelt backwards.

The statistics are bleak, as can be seen in a graph from Derek Lowe’s In the pipeline blog:

R&D trend

But despite this dismal trend, I still see plenty of reason for measured optimism about the future of technology. That’s despite the messiness of real-world projects, out-dated regulatory and testing systems, perverse incentive schemes, institutional lethargy, and inadequate legacy platforms.

This measured optimism comes to the surface in the later stages of the book I have just e-published, at the end of a two-year period of writing it. The book is entitled Smartphones and beyond: lessons from the remarkable rise and fall of Symbian.

As I write in the opening chapter of that book (an excerpt is available online):

The story of the evolution of smartphones is fascinating in its own right – for its rich set of characters, and for its colourful set of triumphs and disasters. But the story has wider implications. Many important lessons can be drawn from careful review of the successes and, yes, the failures of the smartphone industry.

When it comes to the development of modern technology, things are rarely as simple as they first appear. Some companies bring great products to the market, true. These companies are widely lauded. But the surface story of winners and losers can conceal many twists and turns of fortune. Behind an apparent sudden spurt of widespread popularity, there frequently lies a long gestation period. The eventual blaze of success was preceded by the faltering efforts of many pioneers who carved new paths into uncertain terrain. The steps and missteps of these near-forgotten pioneers laid the foundation for what was to follow.

So it was for smartphones. It is likely to be the same with many of the other breakthrough technologies that have the potential to radically transform human experience in the decades ahead. They are experiencing their missteps too.

I write this book as an ardent fan of the latent power of modern technology. I’ve seen smartphone technology playing vital roles in the positive transformation of human experience, all over the world. I expect other technologies to play even more radical roles in the near future – technologies such as wearable computing, 3D printing, synthetic biology, nanotechnology, neuro-enhancement, rejuvenation biotech, artificial intelligence, and next generation robotics. But, as with smartphones, there are likely to be many disappointments en route to eventual success. Indeed, even the “eventual success” cannot be taken for granted.

General principles about the progress of complex technology emerge from reflecting on the details of actual examples. These details – the “warts and all”, to use the phrase attributed to Oliver Cromwell – can confound naive notions as to how complex technology should be developed and applied. As I’ll show from specific examples in the chapters ahead, the details show that failure and success often co-exist closely within the same project. A single project often contains multiple layers, belonging to numerous different chains of cause and effect.

It is my sincere hope that an appreciation of real-world examples of these multiple layers of smartphone development projects will enable a better understanding of how to guide the future evolution of other forms of smart technology. I’ll describe what I call “the core smartphone skillset”, comprising excellence in the three dimensions of “platforms”, “marketing”, and “execution”. To my mind, these are the key enablers of complex technological progress. These enablers have a critical role to play for smartphones, and beyond. Put together well, these enablers can climb mountains.

I see the core smartphone skillset as having strong applicability in wider technological areas. That skillset provides the basis for overcoming the various forms of inertia which are holding back the creation of important new solutions from emerging technologies. The existence of that skillset underlies my measured optimism in the future.

But there’s nothing inevitable about how things will turn out. The future holds many potential scenarios, with varying degrees of upside and downside. The question of which scenarios will become actual, depends on inspired human vision, choice, action, and follow-through. Fortune sometimes hinges on the smallest of root causes. Effects can then cascade.

Hits and misses

As well as the description of the core smartphone skillset” – which I see as having strong applicability in wider technological areas – the book contains my thoughts as the things that Symbian did particularly well over the years, resulting in it becoming the leading smartphone operating system for many years in the first decade of this century:

  1. Investors and supporters who were prepared to take a long-term view of their investments
  2. Regular deliveries against an incremental roadmap
  3. Regularly taking the time to improve the architecture of the software and the processes by which it was delivered
  4. High calibre software development personnel
  5. Cleanly executed acquisitions to boost the company’s talent pool
  6. Early and sustained identification of the profound importance of smartphones
  7. Good links with the technology foresight groups and other roadmap planning groups within a range of customers
  8. A product that was open to influence, modification, and customisation by customers
  9. Careful attention given to enabling an ecosystem of partners
  10. An independent commercial basis for the company, rather than it being set up as a toothless “customers’ cooperative”
  11. Enabling competition.

Over the course of that time, Symbian:

  • Opened minds as to what smartphones could accomplish. In particular, people realised that there was much more they could do with mobile phones, beyond making phone calls. This glimpse encouraged other companies to enter this space, with alternative smartphone platforms that achieved, in the end, considerably greater success
  • Developed a highly capable touch UI platform (UIQ), years before Android/iPhone
  • Supported a rich range of different kinds of mobile devices, all running versions of the same underlying software engine; in particular, Symbian supported the S60 family of devices with its ergonomically satisfying one-handed operating mode
  • Achieved early demonstrations of breakthrough capabilities for mobile phones, including streaming multimedia, smooth switching between wifi and cellular networks, maps with GPS updates, the use of a built-in compass and accelerometer, and augmented reality – such as in the 2003 “Mozzies” (“Mosquitos”) game for the Siemens SX1
  • Powered many ground-breaking multimedia smartphones, imaging smartphones, business smartphones, and fashion smartphones
  • Achieved sales of some 500 million units – with the majority being shipped by Nokia, but with 40 million being shipped inside Japan from 2003 onwards, by Fujitsu, Sharp, Mitsubishi, and Sony Ericsson
  • Held together an alliance of competitors, among the set of licensees and partners of Symbian, with the various companies each having the opportunity to benefit from solutions initially developed with some of their competitors in mind
  • Demonstrated that mobile phones could contain many useful third party applications, without at the same time becoming hotbeds of viruses
  • Featured in some of the best-selling mobile phones of all time, up till then, such as the Nokia 5230, which sold 150 million units.

Alongside the list of “greatest hits”, the book also contains a (considerably longer) list of “greatest misses”, “might-have-beens”, and alternative histories. The two lists are distilled from wide-ranging “warts and all” discussions in earlier chapters of the book, featuring many excerpts from my email and other personal archives.

LFS cover v2

To my past and present colleagues from the Symbian journey, I offer my deep thanks for all their contributions to the creation of modern smartphones. I also offer my apologies for cases when my book brings back memories of episodes that some participants might prefer to forget. But Symbian’s story is too important to forget. And although there is much to regret in individual actions, there is much to savour in the overall outcome. We can walk tall.

The bigger picture now is that other emerging technology sectors risk repeating the stumbles of the smartphone industry. Whereas the smartphone industry recovered from its early stumbles, these other industries might not be so fortunate. They may die before they get off the ground. Their potential benefits might remain forever out of grasp, or be sorely delayed.

If the unflattering episodes covered in Smartphones and beyond can help increase the chance of these new technology sectors addressing real human need quickly, safely, and fully, then I believe it will be worth all the embarrassment and discomfort these episodes may cause to Symbian personnel – me included. We should be prepared to learn from one of the mantras of Silicon Valley: “embrace failure”. Reflecting on failure can provide the launchpad for greater future success, whether in smartphones, or beyond.

Early reviewers of the book have commented that the book is laden with lessons, from the pioneer phase of the smartphone industry, for the nascent technology sectors where they are working – such as wearable computing, 3D printing, social robots, and rejuvenation biotechnology. The strength of these lessons is that they are presented, in this book, in their multi-dimensional messiness, with overlapping conflicting chains of cause and effect, rather than as cut-and-dried abstracted principles.

In that the pages of Smartphones and beyond, I do choose to highlight some specific learnings from particular episodes of smartphone success or smartphone failure. Some lessons deserve to be shouted out. For other episodes, I leave it to readers to reach their own conclusions. In yet other cases, frankly, it’s still not clear to me what lessons should be drawn. Writers who follow in my tracks will no doubt offer their own suggestions.

My task in all these cases is to catalyse a discussion, by bringing stories to the table that have previously lurked unseen or under-appreciated. My fervent hope is that the discussion will make us all collectively wiser, so that emerging new technology sectors will proceed more quickly to deliver the profound benefits of which they are capable.

Some links

For an extended series of extracts from the different chapters in Smartphones and beyond, see the official website for the book.

The book is available for Kindle download from Amazon: UK site and International (US) site.

  • Note that readers without Kindle devices can read the book on a convenient app on their PC or tablet (or smartphone!) – these apps are freely available.

I haven’t created a hard-copy print version. The book would need to be split into three parts to make it physically convenient. Far better, in my view, to be able to carry the book on a light electronic device, with “search” and “bookmark” facilities that very usefully augment the reading experience.

Opportunities to improve

Smartphones and beyond no doubt still contains a host of factual mistakes, errors in judgement, misattributions, personal biases, blind spots, and other shortcomings. All these faults are the responsibility of the author. To suggest changes, either in an updated edition of this book or in some other follow-up project, please get in touch.

Where the book includes copies of excerpts from Internet postings, I have indicated the online location where the original article could be found at the time of writing. In case an article has moved or been deleted since then, it can probably be found again via search engines or the Internet archive, https://archive.org/. If I have inadvertently failed to give due credit to an original writer, or if I have included more text than the owner of the original material wishes, I will make amends in a later edition, upon reasonable request. Quoted information where no source is explicitly indicated is generally taken from copies of my emails, memos in my electronic diary, or other personal archives.

One of the chapters of this book is entitled “Too much openness”. Some readers may feel I have, indeed, been too open with some of the material I have shared. However, this material is generally at least 3-5 years old. Commercial lines of business no longer depend on it remaining secret. So I have applied a historian’s licence. We can all become collectively wiser by discussing it now.

Footnote

Finally, one other apology is due. As I’ve given my attention over the last few months to completing Smartphones and beyond, I’ve deprioritised many other tasks, and have kept colleagues from various important projects waiting for longer than they expected. I can’t promise that I’ll be able to pick up all these other pieces quickly again – that kind of overcommitment is one of the failure modes discussed throughout Smartphones and beyond. But I feel like I’m emerging for a new phase of activity – “Beyond ‘Smartphones and Beyond'”.

To help transition to that new phase, I’ve moved my corporate Delta Wisdom website to a new format (WordPress), and rejigged what had become rather stale content. It’s time for profound change.

Banner v6

 

30 January 2014

A brilliant example of communication about science and humanity

Mathematical Universe

Do you enjoy great detective puzzles? Do you like noticing small anomalies, and turning them into clues to an unexpected explanation? Do you like watching world-class scientists at work, piecing together insights to create new theories, and coping with disappointments when their theories appear to be disproved?

In the book “Our mathematical universe”, the mysteries being addressed are some of the very biggest imaginable:

  • What is everything made out of?
  • Where does the universe come from? For example, what made the Big Bang go “bang”?
  • What gives science its authority to speak with so much confidence about matters such as the age and size of the universe?
  • Is it true that the constants of nature appear remarkably “fine-tuned” so as to allow the emergence of life – in a way suggesting a miracle?
  • What does modern physics (including quantum mechanics) have to teach us about mind and consciousness?
  • What are the chances of other intelligent life existing in our galaxy (or even elsewhere in our universe)?
  • What lies in the future of the human race?

The author, Max Tegmark, is a Swedish-born professor of physics at MIT. He’s made a host of significant contributions to the development of cosmology – some of which you can read about in the book. But in his book, he also shows himself in my view to be a first class philosopher and a first class communicator.

Indeed, this may be the best book on the philosophy of physics that I have ever read. It also has important implications for the future of humanity.

There are some very big ideas in the book. It gives reasons for believing that our universe exists alongside no fewer than four different types of parallel universes. The “level 4 multiverse” is probably one of the grandest conceptions in all of philosophy. (What’s more, I’m inclined to think it’s the correct description of reality. At its heart, despite its grandness, it’s actually a very simple theory, which is a big plus in its favour.)

Much of the time, the writing in the book is accessible to people with pre-university level knowledge of science. On occasion, the going gets harder, but readers should be able to skip over these sections. I recommend reading the book all the way through, since the last chapter contains many profound ideas.

I think you’ll like this book if:

  • You have a fondness for pure mathematics
  • You recognise that the scientific explanation of phenomenon can be every bit as uplifting as pre-scientific supernatural explanations
  • You are ready to marvel at the ingenuity of scientific investigators going all the way back to the ancient Greeks (including those who first measured the distance from the Earth to the Sun)
  • You are critical of “quantum woo woo” hand-waving that says that quantum mechanics proves that consciousness is somehow a non-local agent (and that minds will survive bodily death)
  • You want to find more about Hugh Everett, the physicist who first proposed that “the quantum wave function never collapses”
  • You have a hunch that there’s a good answer to the question “why is there something rather than nothing?”
  • You want to see scientists in action, when they are confronted by evidence that their favoured theories are disproved by experiment
  • You’re ready to laugh at the misadventures that a modern cosmologist experiences (including eminent professors falling asleep in the audience of his lectures)
  • You’re interested in the considered viewpoint of a leading scientist about matters of human existential risk, including nuclear wars and the technological singularity.

Even more than all these good reasons, I highlight this book as an example of what the world badly needs: clear, engaging advocacy of the methods of science and reason, as opposed to mysticism and obscurantism.

Footnote: For my own views about the meaning of quantum mechanics, see my earlier blogpost “Schrödinger’s Rabbits”.

13 January 2014

Six steps to climate catastrophe

In a widely read Rolling Stone article from July 2012, “Global Warming’s Terrifying New Math”, Bill McKibben introduced what he called

Three simple numbers that add up to global catastrophe.

The three numbers are as follows:

  1. 2 degrees Celsius – the threshold of average global temperature rise “which scientists (and recently world leaders at the G8 summit) have agreed we must not cross, for fear of triggering climate feedbacks which, once started, will be almost impossible to stop and will drive accelerated warming out of our control”
  2. 565 Gigatons – the amount of carbon dioxide that can be added into the atmosphere by mid-century with still an 80% chance of the temperature rise staying below two degrees
  3. 2,795 Gigatons“the amount of carbon already contained in the proven coal and oil and gas reserves of the fossil-fuel companies, and the countries (think Venezuela or Kuwait) that act like fossil-fuel companies. In short, it’s the fossil fuel we’re currently planning to burn”.

As McKibben highlights,

The key point is that this new number – 2,795 – is higher than 565. Five times higher.

He has a vivid metaphor to drive his message home:

Think of two degrees Celsius as the legal drinking limit – equivalent to the 0.08 blood-alcohol level below which you might get away with driving home. The 565 gigatons is how many drinks you could have and still stay below that limit – the six beers, say, you might consume in an evening. And the 2,795 gigatons? That’s the three 12-packs the fossil-fuel industry has on the table, already opened and ready to pour.

We have five times as much oil and coal and gas on the books as climate scientists think is safe to burn. We’d have to keep 80 percent of those reserves locked away underground to avoid that fate. Before we knew those numbers, our fate had been likely. Now, barring some massive intervention, it seems certain.

He continues,

Yes, this coal and gas and oil is still technically in the soil. But it’s already economically above ground – it’s figured into share prices, companies are borrowing money against it, nations are basing their budgets on the presumed returns from their patrimony. It explains why the big fossil-fuel companies have fought so hard to prevent the regulation of carbon dioxide – those reserves are their primary asset, the holding that gives their companies their value. It’s why they’ve worked so hard these past years to figure out how to unlock the oil in Canada’s tar sands, or how to drill miles beneath the sea, or how to frack the Appalachians.

The burning question

bqcoverbig

A version of Bill McKibben’s Global Warming’s Terrifying New Math essay can be found as the foreword to the recent book “The Burning Question” co-authored by Duncan Clark and Mike Berners-Lee. The subtitle of the book has a somewhat softer message than in the McKibben essay:

We can’t burn half the world’s oil, coal, and gas. So how do we quit?

But the introduction makes it clear that constraints on our use of fossil fuel reserves will need to go deeper than “one half”:

Avoiding unacceptable risks of catastrophic climate change means burning less than half of the oil, coal, and gas in currently commercial reserves – and a much smaller fraction of all the fossil fuels under the ground…

Notoriously, climate change is a subject that is embroiled in controversy and intemperance. The New York Times carried an opinion piece, “We’re All Climate-Change Idiots” containing this assessment from Anthony Leiserowitz, director of the Yale Project on Climate Change Communication:

You almost couldn’t design a problem that is a worse fit with our underlying psychology.

However, my assessment of the book “The burning question” by Berners-Lee and Clark is that it is admirably objective and clear. That impression was reinforced when I saw Duncan Clark speak about the contents of the book at London’s RSA a couple of months ago. On that occasion, the meeting was constrained to less than an hour, for both presentation and audience Q&A. It was clear that the speaker had a lot more that he could have said.

I was therefore delighted when he agreed to speak on the same topic at a forthcoming London Futurists event, happening in Birkbeck College from 6.15pm to 8.30pm on Saturday 18th January. You can find more details of the London Futurists event here. Following our normal format, we’ll have a full two hours of careful examination of the overall field.

Six steps to climate catastrophe

One way to examine the risks of climate catastrophe induced by human activity is to consider the following six-step chain of cause and effect:

  1. Population – the number of people on the earth
  2. Affluence – the average wealth of people on the earth
  3. Energy intensity – the average amount of energy used to create a unit of wealth
  4. Carbon intensity – the average carbon emissions caused by each unit of energy
  5. Temperature impact – the average increase of global temperature caused by carbon emissions
  6. Global impact – the broader impact on life on earth caused by increased average temperature.

Six steps

As Berners-Lee and Clark discuss in their book, there’s scope to debate, and/or to alter, each of these causal links. Various commentators recommend:

  • A reduction in the overall human population
  • Combatting society’s deep-seated imperatives to pursue economic growth
  • Achieving greater affluence with less energy input
  • Switching to energy sources (such as “renewables”) with reduced carbon emissions
  • Seeing (or engineering) different causes that complicate the relation between carbon emissions and temperature rises
  • Seeing (or engineering) beneficial aspects to global increases in temperature, rather than adverse ones.

What they point out, however, is that despite significant progress to reduce energy intensity and carbon intensity, the other factors seem to be increasing out of control, and dominate the overall equation. Specifically, affluence shows no signs of decreasing, especially when the aspirations of huge numbers of people in emerging economies are taken into consideration.

I see this as an argument to accelerate work on technical solutions – further work to reduce the energy intensity and carbon intensity factors. I also see it as an argument to rapidly pursue investigations of what Berners-Lee and Clark call “Plan B”, namely various forms of geoengineering. This extends beyond straightforward methods for carbon capture and storage, and includes possibilities such as

  • Trying to use the oceans to take more carbon dioxide out of the air and store it in an inert form
  • Screen some of the incoming heat from the sun, by, for example, creating more clouds, or injecting aerosols into the upper atmosphere.

But Berners-Lee and Clark remain apprehensive about one overriding factor. This is the one described earlier: the fact that so much investment is tied up in the share-prices of oil companies that assume that huge amounts within the known reserves of fossil fuels will all be burnt, relatively soon. Providing better technical fixes will, they argue, be insufficient to prevent the ongoing juggernaut steamroller of conversion from fossil fuels into huge cash profits for industry – a juggernaut with the side-effect of accumulated carbon emissions that increase the risk of horrendous climate consequences.

For this reason, they see the need for concerted global action to ensure that the prices being paid for the acquisition and/or consumption of fossil fuels fully take into account the downside costs to the global environment. This will be far from easy to achieve, but the book highlights some practical steps forwards.

Waking up

The first step – as so often, in order to succeed in a complex change project – is to engender a sustained sense of urgency. Politicians won’t take action unless there is strong public pressure for action. This public pressure won’t exist whilst people remain in a state of confusion, disinterest, dejection, and/or helplessness. Here’s an extract from near the end of their book:

It’s crucial that more people hear the simple facts loud and clear: that climate change presents huge risks, that our efforts to solve it so far haven’t worked, and that there’s a moral imperative to constrain unabated fossil fuel use on behalf of current and especially future generations.

It’s often assumed that the world isn’t ready for this kind of message – that it’s too negative or scary or confrontational. But reality needs facing head on – and anyhow the truth may be more interesting and inspiring than the watered down version.

I expect many readers of this blogpost to have questions in their mind – or possibly objections (rather than just questions) – regarding at least some of what’s written above. This topic deserves a 200 page book rather than just a short blogpost.

Rather than just urging people to read the book in question, I have set up the London Futurists event previously mentioned. I am anticipating robust but respectful in-depth discussion.

Beyond technology

One possible response is that the acceleration of technological solutions will deliver sufficient solutions (e.g. reducing energy intensity and carbon intensity) long before we need to worry about the climate reaching any tipping point. Solar energy may play a decisive role – possibly along with new generations of nuclear power technology.

That may turn out to be true. But my own engineering experience with developing complex technological solutions is that the timetable is rarely something that anyone can be confident about in advance. So yes, we need to accelerate the technology solutions. But equally, as an insurance policy, we need to take actions that will buy ourselves more time, in order for these technological solutions to come to full fruition. This insurance policy inevitably involves the messy worlds of politics and economics, alongside the developments that happen in the technological arena.

This last message comes across uncomfortably to people who dislike any idea of global coordinated action in politics or economics. People who believe in “small government” and “markets as free as possible” don’t like to contemplate global scale political or economic action. That is, no doubt, another reason why the analysis of global warming and climate change is such a contentious issue.

22 December 2013

A muscular new kid on the block

The reasonable man adapts himself to the world; the unreasonable one persists in trying to adapt the world to himself. Therefore all progress depends on the unreasonable man. – George Bernard Shaw, “Man and Superman”, 1903

How far should we go, to be the best that we can be? If personal greatness lies at the other side of an intense effort, should we strain every muscle, muster every personal resource, and vigorously push away every distraction, in order to seize that crown?

For example, should we accept the “Transhumanist Wager”, as dramatically portrayed in the trenchant new novel of the same name by former world-traveller and award-winning National Geographic journalist Zoltan Istvan?

The-Transhumanist-Wager-e1368458616371The book, which hit the #1 best-seller spot in Amazon a few months back (in both Philosophy and Science Fiction Visionary and Metaphysical), is a vivid call to action. It’s a call for people around the world to waken up to the imminent potential for a radical improvement in the human condition. The improvement can be earned by harnessing and accelerating ongoing developments in medicine, engineering, and technology.

However, in the nightmare near-future world portrayed in the novel, that improvement will require an intense effort, since the seats of global power are resolutely opposed to any potential for dramatic, human-driven improvement.

For example, under the influence of what the novel calls “a rogue group of right-wing politicians – those who considered Sunday church a central part of their existence”, the US government passes sweeping laws forbidding experimentation in stem cell therapies, genetic reprogramming, human enhancement, and life-extension. Istvan puts into the mouth of the President of the United States the soporific remarks, “Good old-fashioned, basic health, that’s what the people really want”.

That ambition sounds… reasonable, yet it falls far, far short of the potential envisioned by the hero of the novel, Jethro Knights. He has much bigger sights: “My words define a coming new species”.

Anyone reading “The Transhumanist Wager” is likely to have strong reactions on encountering Jethro Knights. Knights may become one of the grand characters of modern fiction. He challenges each of us to rethink how far each of us would be prepared to go, to become the best that we can be. Knights brazenly talks about himself as an “omnipotender”: “an unyielding individual whose central aim is to contend for as much power and advancement as he could achieve, and whose immediate goal is to transcend his human biological limitations in order to reach a permanent sentience”. Throughout the novel, his actions match his muscular philosophy. I read it with a growing mix of horror and, yes, admiration.

The word “wager” in the book’s title recalls the infamous “Pascal’s Wager”. French philosopher and mathematician Blaise Pascal argued in the 17th century that since there was a possibility that God existed, with the power to bestow on believers “an infinitely happy life”, we should take steps to acquire the habit of Christian belief: the potential upsides far outweigh any downsides. Belief in God, according to Pascal, was a wager worth taking. However, critics have long observed that there are many “possible” Gods, each of whom seems to demand different actions as indicators of our faith; the wager alone is no guide as to the steps that should be taken to increase the chance of “an infinitely happy life”.

The transhumanist wager observes, analogously, that there is a possibility that in the not-too-distant future, science and technology will have the ability to bestow on people, if not an “infinitely happy” life, a lifestyle that is hugely expanded and enhanced compared to today’s. Jethro Knights expounds the consequence:

The wager… states that if you love life, you will safeguard that life, and strive to extend and improve it for as long as possible. Anything else you do while alive, any other opinion you have, any other choice you make to not safeguard, extend, and improve that life, is a betrayal of that life…

This is a historic choice that each man and woman on the planet must make. The choice shall determine the rest of your life and the course of civilisation.

Knights is quite the orator – and quite a fighter, too. As the novel proceeds to its climactic conclusion, Knights assembles like-minded scientists and engineers who create a formidable arsenal of remote-controlled weaponry – robots that can use state-of-the-art artificial intelligence to devastating effect. The military stance is needed, in response to the armed forces which the world’s governments are threatening to deploy against the maverick new entity of “Transhumania” – a newly built seasteading nation of transhumanists – which Knights now leads.

It is no surprise that critics of the book have compared Jethro Knights to Joseph Stalin. These criticisms come from within the real-world transhumanist community that Istvan might have counted to rally around the book’s call to action. Perhaps these potential allies were irritated by the description of mainstream transhumanists that appears in the pages of the book: “an undersized group of soft-spoken individuals, mostly aged nerds trying to gently reshape their world… their chivalry and sense of embedded social decency was their downfall”.

I see four possible objections to the wager that lies at the heart of this novel – and to any similar single-minded undertaking to commit whole-heartedly to a methodology of personal transcendence:

  1. First, by misguidedly pursing “greatness”, we might lose grasp of the “goodness” we already possess, and end up in a much worse place than before.
  2. Second, instead of just thinking about our own personal advancement, we have important obligations to our families, loved ones, and our broader social communities.
  3. Third, by being overly strident, we may antagonise people and organisations who could otherwise be our allies.
  4. Fourth, we may be wrong in our analysis of the possibility for future transcendence; for example, faith in science and technology may be misplaced.

Knights confronts each of these objections, amidst the drama to establish Transhumania as his preferred vehicle to human transcendence. Along the way, the novel features other richly exaggerated larger-than-life characters embodying key human concerns – love, spirituality, religion, and politics – who act as counters to Knights’ own headstrong ambitions. Zoe Bach, the mystically inclined physician who keeps spirituality on the agenda, surely speaks for many readers when she tells Knights she understands his logic but sees his methods as not being realistic – and as “not feeling right”.

The book has elements that highlight an uplifting vision for what science and technology can achieve, freed from the meddling interference of those who complain that “humans shouldn’t play at being God”. But it also serves as an awful warning for what might ensue if forces of religious fundamentalism and bio-conservatism become increasingly antagonised, rather than inspired, by the transformational potential of that science and technology.

My takeaway from the book, therefore, is to work harder at building bridges, rather than burning them. We will surely need these bridges in the troubled times that lie ahead. That is my own “transhumanist wager”.

Postscripts

1.) A version of the above essay currently features on the front-page of the online Psychology Today magazine.

DW on front cover2.) If you can be in San Francisco on 1st February, you can see Zoltan Istvan, the author of the Transhumanist Wager, speaking the conference “Transhuman Visions” organised by Brighter Brains:

Transhuman-Visions2-791x10243.) I recently chaired a London Futurists Hangout On Air discussion on The Transhumanist Wager. The panelists, in addition to Zoltan Istvan, were Giulio PriscoRick Searle, and Chris T. Armstrong. You can view the recording of the discussion below. But to avoid spoiling your enjoyment of the book, you might prefer to read the book before you delve into the discussion.

26 September 2013

Risk blindness and the forthcoming energy crash

Filed under: books, carbon, chaos, climate change, Economics, irrationality, politics, risks, solar energy — David Wood @ 11:28 am

‘Logical’ is the last thing human thinking, individual and collective, is. Too compelling an argument can even drive people with a particularly well-insulated belief system deeper into denial.

JL in Japan 2The Energy of Nations: Risk Blindness and the Road to Renaissance, by Jeremy Leggett, is full of vividly quotable aphorisms – such as the one I’ve just cited. I see Jeremy as one of the world’s leading thinkers on solar energy, oil depletion, climate change, and the dysfunctional ways in which investment all-too-frequently works. The Observer has described him as “Britain’s most respected green energy boss”. A glance at his CV shows an impressive range of accomplishments:

Jeremy Leggett is founder and chairman of Solarcentury, the UK’s fastest growing renewable energy company since 2000, and founder and chairman of SolarAid, an African solar lighting charity set up with 5% of Solarcentury’s annual profits and itself parent to a social venture, SunnyMoney, that is the top-selling retailer of solar lights in Africa.

Jeremy has been a CNN Principal Voice, and an Entrepreneur of the Year at the New Energy Awards. He was the first Hillary Laureate for International Leadership on Climate Change, chairs the financial-sector think-tank Carbon Tracker and is a consultant on systemic risk to large corporations. He writes and blogs on occasion for the Guardian and the Financial Times, lectures on short courses in business and society at the universities of Cambridge and St Gallen, and is an Associate Fellow at Oxford University’s Environmental Change Institute.

On his own website, The triple crunch log, Jeremy has the following to say about himself:

This log covers the energy-, climate-, and financial crises, and issues pertinent to society’s response to this “triple crunch”…

Let me explain why am I worried about oil depletion, climate change, and dysfunctional investment.

I researched earth history for 14 years, and so know a bit about what makes up the climate system. I researched oil source rocks for several of those years, funded by BP and Shell among others, and I explored for oil and gas in the Middle East and Asia, so I have a background in the issues relevant to peak oil. And more recently I have been a clean-energy entrepreneur and investor for more than decade, as founder of a solar energy company and founding director of a Swiss venture capital fund, so I have seen how the capital markets operate close to. That experience is the basis for my concerns…

Many of the critics who comment on my blogs urge readers to discount everything I say because I am trying to sell solar energy, and so therefore must be in it for the money, hyping concerns about climate change and peak oil in the cause of self enrichment. (As you would). They have it completely the wrong way round.

I left a lucrative career consulting for the oil industry, and teaching its technicians, because I was concerned about global warming and wanted to act on that concern. I joined Greenpeace (1989), on a fraction of my former income, to campaign for clean energy. I left Greenpeace (1997) to set up a non-profit organisation campaigning for clean energy. I turned it into a for-profit company (1999) because I came to the view that was the best possible way I could campaign for clean energy – by creating a commercial success that could show the way. The company I set up gives 5% of its operating profit to a charity that also campaigns for clean energy, SolarAid. All that said, I hope Solarcentury makes a lot of money. It won’t have succeeded in its mission if it doesn’t. I’m hoping fewer people will still want to discount my arguments, knowing the history.

Today marks the UK availability of his book, The Energy of Nations. Heeding its own advice, quoted above, that there are drawbacks to presenting arguments in an overly rational or compelling format, the book proceeds down a parallel course. A large part of the book reads more like a novel than a textbook, with numerous fascinating episodes retold from Jeremy’s diaries.

937893A1-06FA-4829-B09E-599DEFDC1C7F

The cast of characters that have walk-on parts in these episodes include prime ministers, oil industry titans, leading bankers, journalists, civil servants, analysts, and many others. Heroes and villains appear and re-appear, sometimes grown wiser with the passage of years, but sometimes remaining as recalcitrant, sinister (yes), and slippery (yes again) as ever.

A core theme of the book is risk blindness. Powerful vested interests in society have their own reasons to persuade public opinion that there’s nothing to worry about – that everything is under control. Resources at the disposal of these interests (“the incumbency”) inflict a perverse blindness on society, as regards the risks of the status quo. Speaking against the motion at a debate, This House Believes Peak Oil Is No Longer a Concern, in London’s Queen Elizabeth II Congress Centre in March 2009, in the aftermath of the global financial crisis brought on by hugely unwarranted over-confidence among bankers, Jeremy left a trenchant analogy hanging in the mind of the audience:

I explain that those of us who worry about peak oil fear that the oil industry has lapsed into a culture of over-exuberance about both the remaining oil reserves and prospects of resources yet to be turned into reserves, and about the industry’s ability to deliver capacity to the market even if enough resources exist.

Our main argument is that new capacity flows coming onstream from discoveries made by the oil industry over the past decade don’t compensate for depletion. Hence projections of demand cannot be met a few years hence. This problem will be compounded by other issues, including the accelerating depletion of the many old oilfields that prop up much of global oil production today, the probable exaggeration by OPEC countries of their reserves, and the failure of the ‘price-mechanism’ assumption that higher prices will lead to increased exploration and expanding discoveries…

In conclusion, this debate is all about the risk of a mighty global industry having its asset assessment systemically overstated, due to an endemic culture of over-optimism, with potentially ruinous economic implications.

I pause to let that sentence hang in the air for a second or two.

Now that couldn’t possibly happen, could it?

This none too subtle allusion to the disaster playing out in the financial sector elicits a polite laugh from the audience…

Nowadays, people frequently say that the onset of shale oil and gas should dissolve fears about impending reductions in the availability of oil. Jeremy sees this view as profoundly misguided. Shale is likely to fall far, far short of the expectations that have been heaped on it:

For many, the explosive growth of shale gas production in the USA – now extending into oil from shale, or ‘tight oil’ as it is properly known – is a revolution, a game-changer, and it even heralds a ‘new era of fossil fuels’. For a minority, it shows all the signs of being the next bubble in the markets.

In the incumbency’s widely held view, the US shale gas phenomenon can be exported, opening the way to cheap gas in multiple countries. For others, even if there is no bubble, the phenomenon is not particularly exportable, for a range of environmental, economic and political reasons

This risk too entails shock potential. Take a country like the UK. Its Treasury wishes actively to suppress renewables, so as to ensure that investors won’t be deterred from bankrolling the conversion of the UK into a ‘gas hub’. Picture the scene if most of the national energy eggs are put in that basket, infrastructure is capitalised, and then supplies of cheap gas fall far short of requirement, or even fail to materialise.

As the book makes clear, our collective risk blindness prevents society as a whole from reaching a candid appraisal of no fewer than five major risks facing us over the next few years: oil shock, climate shock, a further crash in the global financial system, the bursting of a carbon bubble in the capital markets, and the crash of the shale gas boom. The emphasis on human irrationality gels with a lot of my own prior reading – as I’ve covered e.g. in Our own entrenched enemies of reasonAnimal spirits – a richer understanding of economics, Influencer – the power to change anything, as well as in my most recent posting When faith gets in the way of progress.

The book concludes with a prediction that society is very likely to encounter, by as early as 2015, either a dramatic oil shock (the widespread realisation that the era of cheap oil is behind us, and that the oil industry has misled us as badly as did the sellers of financial hocus pocus), or a renewed financial crisis, which would then precipitate (but perhaps more slowly) the same oil shock. To that extent, the book is deeply pessimistic.

But there is plenty of optimism in the book too. The author believes – as do I – that provided suitable preparatory steps are taken (as soon as possible), society ought to be able to rebound from the forthcoming crash. He spends time explaining “five premises for the Road to Renaissance”:

  1. The readiness of clean energy for explosive growth
  2. The intrinsic pro-social attributes of clean energy
  3. The increasing evidence of people power in the world
  4. The pro-social tendencies in the human mind
  5. The power of context that leaders will be operating in after the oil crash.

But alongside his optimism, he issues a sharp warning:

I do not pretend that things won’t get much worse before they get better. There will be rioting. There will be food kitchens. There will be blood. There already have been, after the financial crash of 2008. But the next time round will be much worse. In the chaos, we could lose our way like the Maya did.

In summary, it’s a profoundly important book. I found it to be a real pleasure to read, even though the topic is nerve-racking. I burst out laughing in a number of places, and then reflected that it was nervous laughter.

The book is full of material that will probably make you want to underline it or tweet an extract online. The momentum builds up to a dramatic conclusion. Anyone concerned about the future should make time to read it.

Not everyone will agree with everything it contains, but it is clearly an honest and heartfelt contribution to vital debates. The book has already been receiving some terrific reviews from an interesting variety of people. You can see those, a summary, Chapter One, and links for buying the book here.

Finally, it’s a book that is designed to provoke discussion. I’m delighted that the author has agreed to speak at a London Futurists event on Saturday 5th October. Please click here for more details and to RSVP. This is a first class topic addressed by a first class speaker, which deserves a first class audience to match!

19 August 2013

Longevity and the looming financial meltdown

Filed under: aging, books, challenge, converged medicine, Economics, futurist, healthcare, rejuveneering, SENS — David Wood @ 2:12 pm

What kind of transformational infrastructure investment projects should governments prioritise?

In the UK, government seems committed to spending a whopping £42 billion between now and 2032 on a lengthy infrastructure project, namely the “HS2” High Speed rail link which could see trains travelling between London, Birmingham, and six other cities, at up to 250 miles per hour. The scheme has many critics. As Nigel Morris notes in The Independent,

In an analysis published today (Monday), the IEA (Institute for Economic Affairs ) says the scheme’s cost has been vastly underestimated and had failed to take into account changes to routes and extra tunnelling because of local opposition.

Richard Wellings, its author, said: “The evidence is now overwhelming that this will be unbelievably costly to the taxpayer while delivering incredibly poor value for money.”

Supporters of this investment claim that the improved infrastructure will be a boon for business in the UK. Multi-year infrastructure improvement projects are something that the private sector tends not to attempt. Unless there’s coordination from government, this kind of project will not happen.

The BBC news website (here and here) helpfully listed ten alternative infrastructure improvement projects that might be better recipients of portions of the £42B earmarked for HS2. Suggestions include:

  • A new road motorway for the east of Britain
  • A bridge to the Isle of Wight
  • A new Channel tunnel, directly accessible to car drivers
  • Tram systems for Liverpool and Leeds
  • A tunnel between Great Britain and Ireland
  • Aerial cycle highways for London

If it were my decision, I would reallocate a large chunk of this funding to a different kind of multi-year infrastructure improvement project. This is in the area of health rather than the area of transport. The idea is to significantly promote research and deployment of treatments in preventive and regenerative medicine.

Ageless CoverThe argument for this kind of sustained investment is laid out in the book The Ageless Generation: How Advances in Biomedicine Will Transform the Global Economy, by Alex Zhavoronkov, which I’ve just finished reading. It’s a compelling analysis.

Alex will be sharing his views at a forthcoming meeting of the London Futurists, on Saturday 31st July. There are more details of this meeting here. (Note that a number of copies of the speaker’s book will be available free of charge to attendees of this meeting.)

The book contains many eye-opening pointers to peer-reviewed research. This covers the accelerating pace of medical breakthroughs, in areas such as bioartificial organs, stem cell therapies, repairing damaged tissues, fortifying the immune system, and autophagy. The research also covers financial and economic matters.

For example, here’s a snippet from the 2009 report “The Burden of Chronic Disease” (PDF) – which is written from a US point of view, though the implications apply for other countries too:

Our current economic reality reminds us that now more than ever, we need to invest in the backbone of our economy: the American workforce. Without question, the single biggest force threatening U.S. workforce productivity, as well as health care affordability and quality of life, is the rise in chronic conditions…

Further into that report, data is quoted from the Milken Institute report “The Economic Burden of Chronic Disease” (PDF)

By our calculations, the most common chronic diseases are costing the economy more than $1 trillion annually—and that figure threatens to reach $6 trillion by the middle of the century.

The costs include lost of productivity, as well as absenteeism:

The potential savings on treatment represents just the tip of the proverbial iceberg. Chronically ill workers take sick days, reducing the supply of labor—and, in the process, the GDP. When they do show up for work to avoid losing wages, they perform far below par—a circumstance known as “presenteeism,” in contrast to absenteeism. Output loss (indirect impacts) due to presenteeism (lower productivity) is immense—several times greater than losses associated with absenteeism. Last (but hardly a footnote), avoidable illness diverts the productive capacity of caregivers, adding to the reduction in labor supply for other uses. Combined, the indirect impacts of these diseases totaled just over $1 trillion in 2003…

In his book, Alex builds on this analysis, focussing on the looming costs to healthcare systems and pensions systems of ever greater portions of our population being elderly and infirm, and becoming increasingly vulnerable to chronic illnesses. Countries face bankruptcy on account of the increased costs. At the very least, we must expect radical changes in the provision of social welfare. The pensionable age is likely to rocket upwards. Families are likely to discover that the provisions they have made for their old age and retirement are woefully inadequate.

The situation is bleak, but solutions are at hand, through a wave of biomedical innovation which could make our recent wave of IT innovation look paltry in comparison. However, despite their promise, these biomedical solutions are arriving too slowly. The healthcare and pharmaceutical industries are bringing us some progress, but they are constrained by their own existing dynamics.

Alex_cover_2_smallAs Alex writes,

The revolution in information technology has irreversibly changed our lives over the past two decades. However, advances in biomedicine stand poised to eclipse the social and economic effects of IT in the near future.

Biomedical innovations typically reach the mass market in much slower fashion than those from information technology. They follow a paradigm where neither demand, in the form of the consumer, nor supply, in the form of the innovator, can significantly accelerate the process. Nevertheless, many of the advances made over the past three decades are already propagating into mainstream clinical practice and converging with other technologies extending our life spans.

However, in the near-term, unless the governments of the debt-laden developed countries make proactive policy changes, there is a possibility of lengthy economic decline and even collapse.

Biomedical advances are not all the same. The current paradigm in biomedical research, clinical regulation and healthcare has created a spur of costly procedures that provide marginal increases late in life extending the “last mile”, with the vast percentage of the lifetime healthcare costs being spent in the last few years of patient’s life, increasing the burden on the economy and society.

There is an urgent need to proactively adjust healthcare, social security, research and regulatory policies:

  • To ameliorate the negative near-term effects
  • To accelerate the mass adoption of technologies contributing positively to the economy.

Now that’s a project well worth spending billions on. It’s a vision of expanded healthspans rather than just of expanded lifespans. It’s a vision of people continuing to be happily productive members of society well into their 80s and 90s and beyond, learning new skills, continuing to expand their horizons, whilst sharing their wisdom and experience with younger generations.

It’s a great vision for the individuals involved (and their families), but also a great vision for the well-being of society as a whole. However, without concerted action, it’s unlikely to become reality.

Footnote 1: To connect the end of this line of reasoning back to its start: If the whole workforce remains healthy, in body, mind, and spirit, for many years more than before, there will be plenty of extra resources and skills available to address problems in other fields, such as inadequate traffic vehicle infrastructure. My own preferred approach to that particular problem is improved teleconferencing, virtual presence, avatar representation, and other solutions based on transporting bits rather than transporting atoms, though there’s surely scope for improved physical transport too. Driverless vehicles have a lot of promise.

Footnote 2: The Lifestar Institute produced a well-paced 5 minute video, “Can we afford not to try?” covering many of the topics I’ve mentioned above. View it at the Lifestar Institute site, or, for convenience, embedded below.

Footnote 3: The Lifestar Institute video was shown publicly for the first time at the SENS4 conference in Cambridge in September 2009. I was in the audience that day and vividly remember the impact the video made on me. The SENS Foundation is running the next in their series of biennial conferences (“SENS 6”) this September, from the 3rd to the 7th. The theme is “Reimagine aging”. I’m greatly looking forward to it!

conf-page-banner

20 December 2012

An absorbing, challenging vision of near-future struggles

nexus-75-dpiTechnology can cause carnage, and in the wake of the carnage, outrage.

Take the sickening example of the shooting dead of 20 young children and six adults at Sandy Hook Elementary School in Newtown, Connecticut. After that fearful carnage, it’s no surprise that there are insistent calls to restrict the availability of powerful automatic guns.

There are similar examples of carnage and outrage in the new science fiction novel “Nexus: mankind gets an upgrade”, by the noted futurist and writer Ramez Naam.

I met Ramez at the WorldFuture 2012 event in Toronto earlier this year, where he gave a presentation on “Can Innovation Save the Planet?” which I rated as one of the very best sessions in the midst of a very good conference. I’ve been familiar with the high calibre of his thinking for some time, so when I heard that his new book Nexus was available for download to my Kindle – conveniently just ahead of me taking a twelve-hour flight – I jumped at the chance to purchase a copy. It turned out to be a great impulse purchase decision. I finished the book just as the airplane wheels touched down.

The type of technology that is linked to carnage and outrage in Nexus can be guessed from the image on the front cover of the book – smart drugs. Of course, drugs, like guns, are already the source of huge public debate in terms of whether to restrict access. Events described in Nexus make it clear why certain drugs become even more controversial, a few short decades ahead, in this fictional but all-too-credible vision of the near future.

Back in the real world, public interest in smart drugs is already accelerating:

  • I hear more and more discussions when people talk about taking nootropics of one sort or another – to help them “pull an all-nighter”, or to be especially sharp and mentally focused for an important interview. These comments often get followed up by reflections on whether these drugs might convey an unfair advantage.
  • The 2011 film Limitless – which I reviewed in passing here – helped to raise greater public awareness of the potential of this technology.
  • Audience attendance (and the subsequent online debate) at the recent London Futurist event “Hacking our wetware, with Andrew Vladimirov”, convinced me that public appetite for information on smart drugs is about to greatly intensify.

And as discussion of the technology of smart drugs increases, so (quite rightly) does discussion of the potential downsides and drawbacks of that technology.

Nexus is likely to ratchet this interest even higher. The technology in the novel doesn’t just add a few points of IQ, in a transitory basis, to the people who happen to take it. It goes much further than that. It has the potential to radically upgrade humans – with as big a jump in evolution (in the course of a few decades) as the transition between apes and humans. And not everyone likes that potential, for reasons that the book gradually makes credible, through sympathetic portrayals of various kinds of carnage.

Nexus puts the ideas of transhumanism and posthumanism clearly on the map. And lots more too, which I shouldn’t say much about, to avoid giving away the plot and spoiling the enjoyment of new readers.

But I will say this:

  • My own background as a software engineer (a profession I share with Ramez Naam) made me especially attuned to the descriptions of the merging of computing science ideas with those of smart drugs; other software engineers are likely to enjoy these speculations too
  • My strong interest in the battle of ideas about progress made me especially interested in inner turmoil (and changes of mind) of various key characters, as they weighed up the upsides and downsides of making new technology more widely available
  • My sympathy for the necessity of an inner path to enlightenment, to happen in parallel with increasingly smart deployment of increasingly powerful technology, meant that I was intrigued by some of the scenes in the book involving meditative practices
  • My status as an aspiring author myself – I’m now about one third of the way through the book I’m writing – meant that I took inspiration from seeing how a good author can integrate important ideas about technology, philosophy, societal conflict, and mental enlightenment, in a cracking good read.

Ramez is to be congratulated on writing a book that should have wide appeal, and which will raise attention to some very important questions – ahead of the time when rapid improvements of technology might mean that we have missed our small window of opportunity to steer these developments in ways that augment, rather than diminish, our collective humanity.

Anyone who thinks of themselves as a futurist should do themselves a favour and read this book, in order to participate more fully in the discussions which it is bound to catalyse.

Footnote: There’s a lot of strong language in the book, and “scenes of an adult nature”. Be warned. Some of the action scenes struck me as implausible – but hey, that’s the same for James Bond and Jason Bourne, so that’s no showstopper. Which prompts the question – could Nexus be turned into a film? I hope so!

2 November 2012

The future of human enhancement

Is it ethical to put money and resources into trying to develop technological enhancements for human capabilities, when there are so many alternative well-tested mechanisms available to address pressing problems such as social injustice, poverty, poor sanitation, and endemic disease? Is that a failure of priority? Why make a strenuous effort in the hope of allowing an elite few individuals to become “better than well”, courtesy of new technology, when so many people are currently so “less than well”?

These were questions raised by Professor Anne Kerr at a public debate earlier this week at the London School of Economics: The Ethics of Human Enhancement.

The event was described as follows on the LSE website:

This dialogue will consider how issues related to human enhancement fit into the bigger picture of humanity’s future, including the risks and opportunities that will be created by future technological advances. It will question the individualistic logic of human enhancement and consider the social conditions and consequences of enhancement technologies, both real and imagined.

From the stage, Professor Kerr made a number of criticisms of “individualistic logic” (to use the same phrase as in the description of the event). Any human enhancements provided by technology, she suggested, would likely only benefit a minority of individuals, potentially making existing social inequalities even worse than at present.

She had a lot of worries about technology amplifying existing human flaws:

  • Imagine what might happen if various clever people could take some pill to make themselves even cleverer? It’s well known that clever people often make poor decisions. Their cleverness allows them to construct beguiling sophistry to justify the actions they already want to take. More cleverness could mean even more beguiling sophistry.
  • Or imagine if rapacious bankers could take drugs to boost their workplace stamina and self-serving brainpower – how much more effective they would become at siphoning off public money to their own pockets!
  • Might these risks be addressed by public policy makers, in a way that would allow benefits of new technology, without falling foul of the potential downsides? Again, Professor Kerr was doubtful. In the real world, she said, policy makers cannot operate at that level. They are constrained by shorter-term thinking.

For such reasons, Professor Kerr was opposed to these kinds of technology-driven human enhancements.

When the time for audience Q&A arrived, I felt bound to ask from the floor:

Professor Kerr, would you be in favour of the following examples of human enhancement, assuming they worked?

  1. An enhancement that made bankers more socially attuned, with more empathy, and more likely to use their personal wealth in support of philanthropic projects?
  2. An enhancement that made policy makers less parochial, less politically driven, and more able to consider longer-term implications in an objective manner?
  3. And an enhancement that made clever people less likely to be blind to their own personal cognitive biases, and more likely to genuinely consider counters to their views?

In short, would you support enhancements that would make people wiser as well as smarter, and kinder as well as stronger?

The answer came quickly:

No. They would not work. And there are other means of achieving the same effects, including progress of democratisation and education.

I countered: These other methods don’t seem to be working well enough. If I had thought more quickly, I would have raised examples such as society’s collective failure to address the risk of runaway climate change.

Groundwork for this discussion had already been well laid by the other main speaker at the event, Professor Nick Bostrom. You can hear what Professor Bostrom had to say – as well as the full content of the debate – in an audio recording of the event that is available here.

(Small print: I’ve not yet taken the time to review the contents of this recording. My description in this blogpost of some of the verbal exchanges inevitably paraphrases and extrapolates what was actually said. I apologise in advance for any mis-representation, but I believe my summary to be faithful to the spirit of the discussion, if not to the actual words used.)

Professor Bostrom started the debate by mentioning that the question of human enhancement is a big subject. It can be approached from a shorter-term policy perspective: what rules should governments set, to constrain the development and application of technological enhancements, such as genetic engineering, neuro-engineering, smart drugs, synthetic biology, nanotechnology, and artificial general intelligence? It can also be approached from the angle of envisioning larger human potential, that would enable the best possible future for human civilisation. Sadly, much of the discussion at the LSE got bogged down in the shorter-term question, and lost sight of the grander accomplishments that human enhancements could bring.

Professor Bostrom had an explanation for this lack of sustained interest in these larger possibilities: the technologies for human enhancement that are currently available do not work that well:

  • Some drugs give cyclists or sprinters an incremental advantage over their competitors, but the people who take these drugs still need to train exceptionally hard, to reach the pinnacle of their performance
  • Other drugs seem to allow students to concentrate better over periods of time, but their effects aren’t particularly outstanding, and it’s possible that methods such as good diet, adequate rest, and meditation, have results that are at least as significant
  • Genetic selection can reduce the risk of implanted embryos developing various diseases that have strong genetic links, but so far, there is no clear evidence that genetic selection can result in babies with abilities higher than the general human range.

This lack of evidence of strong tangible results is one reason why Professor Kerr was able to reply so quickly to my suggestion about the three kinds of technological enhancements, saying these enhancements would not work.

However, I would still like to press they question: what if they did work? Would we want to encourage them in that case?

A recent article in the Philosophy Now journal takes the argument one step further. The article was co-authored by Professors Julian Savulescu and Ingmar Persson, and draws material from their book “Unfit for the Future: The Need for Moral Enhancement”.

To quote from the Philosophy Now article:

For the vast majority of our 150,000 years or so on the planet, we lived in small, close-knit groups, working hard with primitive tools to scratch sufficient food and shelter from the land. Sometimes we competed with other small groups for limited resources. Thanks to evolution, we are supremely well adapted to that world, not only physically, but psychologically, socially and through our moral dispositions.

But this is no longer the world in which we live. The rapid advances of science and technology have radically altered our circumstances over just a few centuries. The population has increased a thousand times since the agricultural revolution eight thousand years ago. Human societies consist of millions of people. Where our ancestors’ tools shaped the few acres on which they lived, the technologies we use today have effects across the world, and across time, with the hangovers of climate change and nuclear disaster stretching far into the future. The pace of scientific change is exponential. But has our moral psychology kept up?…

Our moral shortcomings are preventing our political institutions from acting effectively. Enhancing our moral motivation would enable us to act better for distant people, future generations, and non-human animals. One method to achieve this enhancement is already practised in all societies: moral education. Al Gore, Friends of the Earth and Oxfam have already had success with campaigns vividly representing the problems our selfish actions are creating for others – others around the world and in the future. But there is another possibility emerging. Our knowledge of human biology – in particular of genetics and neurobiology – is beginning to enable us to directly affect the biological or physiological bases of human motivation, either through drugs, or through genetic selection or engineering, or by using external devices that affect the brain or the learning process. We could use these techniques to overcome the moral and psychological shortcomings that imperil the human species.

We are at the early stages of such research, but there are few cogent philosophical or moral objections to the use of specifically biomedical moral enhancement – or moral bioenhancement. In fact, the risks we face are so serious that it is imperative we explore every possibility of developing moral bioenhancement technologies – not to replace traditional moral education, but to complement it. We simply can’t afford to miss opportunities…

In short, the argument of Professors Savulescu and Persson is not just that we should allow the development of technology that can enhance human reasoning and moral awareness, but that we must strongly encourage it. Failure to do so would be to commit a grave error of omission.

These arguments about moral imperative – what technologies should we allow to be developed, or indeed encourage to be developed – are in turn strongly influenced by our beliefs about what technologies are possible. It’s clear to me that many people in positions of authority in society – including academics as well as politicians – are woefully unaware about realistic technology possibilities. People are familiar with various ideas as a result of science fiction novels and movies, but it’s a different matter to know the division between “this is an interesting work of fiction” and “this is a credible future that might arise within the next generation”.

What’s more, when it comes to people forecasting the likely progress of technological possibilities, I see a lot of evidence in favour of the observation made by Roy Amara, long-time president of the Institute for the Future:

We tend to overestimate the effect of a technology in the short run and underestimate the effect in the long run.

What about the technologies mentioned by Professors Savulescu and Persson? What impact will be possible from smart drugs, genetic selection and engineering, and the use of external devices that affect the brain or the learning process? In the short term, probably less than many of us hope; in the longer term, probably more than most of us expect.

In this context, what is the “longer term”? That’s the harder question!

But the quest to address this kind of question, and then to share the answers widely, is the reason I have been keen to support the growth of the London Futurist meetup, by organising a series of discussion meetings with well-informed futurist speakers. Happily, membership has been on the up-and-up, reaching nearly 900 by the end of October.

The London Futurist event happening this weekend – on the afternoon of Saturday 3rd November – picks up the theme of enhancing our mental abilities. The title is “Hacking our wetware: smart drugs and beyond – with Andrew Vladimirov”:

What are the most promising methods to enhance human mental and intellectual abilities significantly beyond the so-called physiological norm? Which specific brain mechanisms should be targeted, and how?  Which aspects of wetware hacking are likely to grow in prominence in the not-too-distant future?

By reviewing a variety of fascinating experimental findings, this talk will explore:

  • various pharmacological methods, taking into account fundamental differences in Eastern and Western approaches to the development and use of nootropics
  • the potential of non-invasive neuro-stimulation using CES (Cranial Electrotherapy Stimulation) and TMS (Transcranial Magnetic Stimulation)
  • data suggesting the possibility to “awaken” savant-like skills in healthy humans without paying the price of autism
  • apparent means to stimulate seemingly paranormal abilities and transcendental experiences
  • potential genetic engineering perspectives, aiming towards human cognition enhancement.

The advance number of positive RSVPs for this talk, as recorded on the London Futurist meetup site, has reached 129 at the time of writing – which is already a record.

(From my observations, I have developed the rule of thumb that the number of people who actually turn up for a meeting is something like 60%-75% of the number of positive RSVPs.)

I’ll finish by returning to the question posed at the beginning of my posting:

  • Are these technological enhancements likely to increase human inequality (by benefiting only a small number of users),
  • Or are they instead likely to drop in price and grow in availability (the same as happened, for example, with smartphones, Internet access, and many other items of technology)?

My answer – which I believe is shared by Professor Bostrom – is that things could still go either way. That’s why we need to think hard about their development and application, ahead of time. That way, we’ll become better informed to help influence the outcome.

« Newer PostsOlder Posts »

Blog at WordPress.com.