dw2

22 November 2009

Timescales for Human Body Version 2.0

Filed under: aging, Kurzweil, nanotechnology — David Wood @ 7:21 pm

In the coming decades, a radical upgrading of our body’s physical and mental systems, already underway, will use nanobots to augment and ultimately replace our organs. We already know how to prevent most degenerative disease through nutrition and supplementation; this will be a bridge to the emerging biotechnology revolution, which in turn will be a bridge to the nanotechnology revolution. By 2030, reverse-engineering of the human brain will have been completed and nonbiological intelligence will merge with our biological brains.

The paragraph above is the abstract for the chapter by Ray Kurzweil in the book “The Scientific Conquest of Death“.  In that chapter, Ray sets out a vision for a route to indefinite human lifespans.

Here are a few highlights from the essay:

It’s All About Nanobots

In a famous scene from the movie, The Graduate, Benjamin’s mentor gives him career advice in a single word: “plastics.”  Today, that word might be “software,” or “biotechnology,” but in another couple of decades, the word is likely to be “nanobots.”  Nanobots—blood-cell-sized robots—will provide the means to radically redesign our digestive systems, and, incidentally, just about everything else.

In an intermediate phase, nanobots in the digestive tract and bloodstream will intelligently extract the precise nutrients we need, call for needed additional nutrients and supplements through our personal wireless local area network, and send the rest of the food we eat on its way to be passed through for elimination.

If this seems futuristic, keep in mind that intelligent machines are already making their way into our blood stream.  There are dozens of projects underway to create blood-stream-based “biological microelectromechanical systems” (bioMEMS) with a wide range of diagnostic and therapeutic applications.  BioMEMS devices are being designed to intelligently scout out pathogens and deliver medications in very precise ways…

A key question in designing this technology will be the means by which these nanobots make their way in and out of the body.  As I mentioned above, the technologies we have today, such as intravenous catheters, leave much to be desired.  A significant benefit of nanobot technology is that unlike mere drugs and nutritional supplements, nanobots have a measure of intelligence.  They can keep track of their own inventories, and intelligently slip in and out of our bodies in clever ways.  One scenario is that we would wear a special “nutrient garment” such as a belt or undershirt.  This garment would be loaded with nutrient bearing nanobots, which would make their way in and out of our bodies through the skin or other body cavities.

At this stage of technological development, we will be able to eat whatever we want, whatever gives us pleasure and gastronomic fulfillment, and thereby unreservedly explore the culinary arts for their tastes, textures, and aromas.  At the same time, we will provide an optimal flow of nutrients to our bloodstream, using a completely separate process.  One possibility would be that all the food we eat would pass through a digestive tract that is now disconnected from any possible absorption into the bloodstream.

Elimination

This would place a burden on our colon and bowel functions, so a more refined approach will dispense with the function of elimination.  We will be able to accomplish this using special elimination nanobots that act like tiny garbage compactors.  As the nutrient nanobots make their way from the nutrient garment into our bodies, the elimination nanobots will go the other way.  Periodically, we would replace the nutrition garment for a fresh one.  One might comment that we do obtain some pleasure from the elimination function, but I suspect that most people would be happy to do without it.

Ultimately we won’t need to bother with special garments or explicit nutritional resources.  Just as computation will eventually be ubiquitous and available everywhere, so too will basic metabolic nanobot resources be embedded everywhere in our environment.  In addition, an important aspect of this system will be maintaining ample reserves of all needed resources inside the body.  Our version 1.0 bodies do this to only a very limited extent, for example, storing a few minutes of oxygen in our blood, and a few days of caloric energy in glycogen and other reserves.  Version 2.0 will provide substantially greater reserves, enabling us to be separated from metabolic resources for greatly extended periods of time.

Once perfected, we will no longer need version 1.0 of our digestive system at all.  I pointed out above that our adoption of these technologies will be cautious and incremental, so we will not dispense with the old-fashioned digestive process when these technologies are first introduced.  Most of us will wait for digestive system version 2.1 or even 2.2 before being willing to do dispense with version 1.0.  After all, people didn’t throw away their typewriters when the first generation of word processors was introduced.  People held onto their vinyl record collections for many years after CDs came out (I still have mine).  People are still holding onto their film cameras, although the tide is rapidly turning in favor of digital cameras.

However, these new technologies do ultimately dominate, and few people today still own a typewriter.  The same phenomenon will happen with our reengineered bodies.  Once we’ve worked out the inevitable complications that will arise with a radically reengineered gastrointestinal system, we will begin to rely on it more and more.

Programmable Blood

As we reverse-engineer (learn the principles of operation of) our various bodily systems, we will be in a position to engineer new systems that provide dramatic improvements.  One pervasive system that has already been the subject of a comprehensive conceptual redesign is our blood…

I’ve personally watched (through a microscope) my own white blood cells surround and devour a pathogen, and I was struck with the remarkable sluggishness of this natural process.  Although replacing our blood with billions of nanorobotic devices will require a lengthy process of development, refinement, and regulatory approval, we already have the conceptual knowledge to engineer substantial improvements over the remarkable but very inefficient methods used in our biological bodies…

Have a Heart, or Not

The next organ on my hit list is the heart.  It’s a remarkable machine, but it has a number of severe problems.  It is subject to a myriad of failure modes, and represents a fundamental weakness in our potential longevity.  The heart usually breaks down long before the rest of the body, and often very prematurely.

Although artificial hearts are beginning to work, a more effective approach will be to get rid of the heart altogether.  Designs include nanorobotic blood cell replacements that provide their own mobility.  If the blood system moves with its own movement, the engineering issues of the extreme pressures required for centralized pumping can be eliminated.  As we perfect the means of transferring nanobots to and from the blood supply, we can also continuously replace the nanobots comprising our blood supply…

So What’s Left?

Let’s consider where we are.  We’ve eliminated the heart, lungs, red and white blood cells, platelets, pancreas, thyroid and all the hormone-producing organs, kidneys, bladder, liver, lower esophagus, stomach, small intestines, large intestines, and bowel.  What we have left at this point is the skeleton, skin, sex organs, mouth and upper esophagus, and brain…

Redesigning the Human Brain

The process of reverse engineering and redesign will also encompass the most important system in our bodies: the brain.  The brain is at least as complex as all the other organs put together, with approximately half of our genetic code devoted to its design.  It is a misconception to regard the brain as a single organ.  It is actually an intricate collection of information-processing organs, interconnected in an elaborate hierarchy, as is the accident of our evolutionary history.

The process of understanding the principles of operation of the human brain is already well under way.  The underlying technologies of brain scanning and neuron modeling are scaling up exponentially, as is our overall knowledge of human brain function.  We already have detailed mathematical models of a couple dozen of the several hundred regions that comprise the human brain.

The age of neural implants is also well under way.  We have brain implants based on “neuromorphic” modeling (i.e., reverse-engineering of the human brain and nervous system) for a rapidly growing list of brain regions.  A friend of mine who became deaf while an adult can now engage in telephone conversations again because of his cochlear implant, a device that interfaces directly with the auditory nervous system.  He plans to replace it with a new model with a thousand levels of frequency discrimination, which will enable him to hear music once again.  He laments that he has had the same melodies playing in his head for the past 15 years and is looking forward to hearing some new tunes.  A future generation of cochlear implants now on the drawing board will provide levels of frequency discrimination that go significantly beyond that of “normal” hearing…

And the essay continues.  It’s well worth reading in its entirety.  A short websearch finds a slightly longer version of the same essay online, on Kurzweil’s own website, along with a conceptual illustration by media artist and philosopher Natasha Vita-More:

Evaluating the vision: the questions

Three main questions arise in response to this vision of “Human Body Version 2.0”:

  1. Is the vision technologically feasible?
  2. Is the vision morally attractive?
  3. Within what timescales might the vision become feasible?

Progress: encouraging, but not rocket-paced

A recent article in the New Scientist, Medibots: The world’s smallest surgeons, takes up the theme of nanobots with medical usage, and reports on some specific progress:

It was the 1970s that saw the arrival of minimally invasive surgery – or keyhole surgery as it is also known. Instead of cutting open the body with large incisions, surgical tools are inserted through holes as small as 1 centimetre in diameter and controlled with external handles. Operations from stomach bypass to gall bladder removal are now done this way, reducing blood loss, pain and recovery time.

Combining keyhole surgery with the da Vinci system means the surgeon no longer handles the instruments directly, but via a computer console. This allows greater precision, as large hand gestures can be scaled down to small instrument movements, and any hand tremor is eliminated…

There are several ways that such robotic surgery may be further enhanced. Various articulated, snake-like tools are being developed to access hard-to-reach areas. One such device, the “i-Snake”, is controlled by a vision-tracking device worn over the surgeon’s eyes…

With further advances in miniaturisation, the opportunities grow for getting medical devices inside the body in novel ways. One miniature device that is already tried and tested is a camera in a capsule small enough to be swallowed…

The 20-millimetre-long HeartLander has front and rear foot-pads with suckers on the bottom, which allow it to inch along like a caterpillar. The surgeon watches the device with X-ray video or a magnetic tracker and controls it with a joystick. Alternatively, the device can navigate its own path to a spot chosen by the surgeon…

While the robot could in theory be used in other parts of the body, in its current incarnation it has to be introduced through a keyhole incision thanks to its size and because it trails wires to the external control box. Not so for smaller robots under wireless control.

One such device in development is 5 millimetres long and just 1 millimetre in diameter, with 16 vibrating legs. Early versions of the “ViRob” had on-board power, but the developers decided that made it too bulky. Now it is powered externally, by a nearby electromagnet whose field fluctuates about 100 times a second, causing the legs to flick back and forth. The legs on the left and right sides respond best to different frequencies, so the robot can be steered by adjusting the frequency…

While the ViRob can crawl through tubes or over surfaces, it cannot swim. For that, the Israeli team are designing another device, called SwiMicRob, which is slightly larger than ViRob at 10 millimetres long and 3 millimetres in diameter. Powered by an on-board motor, the device has two tails that twirl like bacteria’s flagella. SwiMicRob may one day be used inside fluid-filled spaces such those within the spine, although it is at an earlier stage of development than ViRob.

Another group has managed to shrink a medibot significantly further – down to 0.9 millimetres by 0.3 millimetres – by stripping out all propulsion and steering mechanisms. It is pulled around by electromagnets outside the body. The device itself is a metal shell shaped like a finned American football and it has a spike on the end…

The Swiss team is also among several groups who are trying to develop medibots at a vastly smaller scale, just nanometres in size, but these are at a much earlier development stage. Shrinking to this scale brings a host of new challenges, and it is likely to be some time before these kinds of devices reach the clinic.

Brad Nelson, a roboticist at the Swiss Federal Institute of Technology (EHT) in Zurich, hopes that if millimetre-sized devices such as his ophthalmic robot prove their worth, they will attract more funding to kick-start nanometre-scale research. “If we can show small devices that do something useful, hopefully that will convince people that it’s not just science fiction.”

In summary: nanoscale medibots appear plausible, but there’s still a large amount of research and development required.

Kurzweil’s prediction on timescales

The book “The Scientific Conquest of Death“, containing Kurzweil’s essay, was published in 2004.  The online version is dated 2003.  In 2003, 2010 – the end of the decade – presumably looked a long way off.  In the essay, Kurzweil makes some predictions about the speed of progress towards Human Body Version 2.0:

By the end of this decade, computing will disappear as a separate technology that we need to carry with us.  We’ll routinely have high-resolution images encompassing the entire visual field written directly to our retinas from our eyeglasses and contact lenses (the Department of Defense is already using technology along these lines from Microvision, a company based in Bothell, Washington).  We’ll have very-high-speed wireless connection to the Internet at all times.  The electronics for all of this will be embedded in our clothing.  Circa 2010, these very personal computers will enable us to meet with each other in full-immersion, visual-auditory, virtual-reality environments as well as augment our vision with location- and time-specific information at all times.

Progress with miniaturisation of computers – and the adoption of smartphones – has been impressive since 2003.  However, it’s now clear that some of Kurzweil’s predictions were over-optimistic.  If his predictions for 2010 were over-optimistic, what should we conclude about his predictions for 2030?

The conflicting pace of technological progress

My own view of predictions is that they are far from “black and white”.  I’ve made my own share of predictions over the years, about the rate of progress with smartphone technologies.  I’ve also reflected on the fact that it’s difficult to draw conclusions about the rate of change.

For example, from my “Insight” essay from November 2006, “The conflicting pace of mobile technology“:

What’s the rate of improvement of mobile phones?  Disconcertingly, the answer is both “surprisingly fast” and “surprisingly slow”…

A good starting point is the comment made by Monitor’s Bhaskar Chakravorti in his book “The slow pace of fast change”, when he playfully dubbed a certain phenomenon as “Demi Moore’s Law”.  The phenomenon is that technology’s impact in an inner-connected marketplace often proceeds at only half the pace predicted by Moore’s Law.  The reasons for this slower-than-expected impact are well worth pondering:

  • New applications and services in a networked marketplace depend on simultaneous changes being coordinated at several different points in the value chain
  • Although the outcome would be good for everyone if all players kept on investing in making the required changes, these changes make much less sense when viewed individually.

Sometimes this is called “the prisoner’s dilemma”.  It’s also known as “the chicken and egg problem”.

The most interesting (and the most valuable) smartphone services will require widespread joint action within the mobile industry, including maintaining openness to new ideas, new methods, and new companies.  It also requires a spirit of “cooperate before competing”.  If adjacent players in the still-formative smartphone value chain focus on fighting each other for dominance in our current small pie, it will prevent the stage-by-stage emergence of killer new services that will make the pie much larger for everyone’s benefit.

Thankfully, although the network effects of a complex marketplace can act to slow down the emergence of new innovations, while that market is still being formed, it can have the opposite effect once all the pieces of the smartphone open virtuous cycle have learned to collaborate with maximum effectiveness.  When that happens, the pace of mobile change can even exceed that predicted by Moore’s Law…

And from another essay in the same series, “A celebration of incremental improvement“, from February 2006:

We all know that it’s a perilous task to predict the future of technology.  The mere fact that a technology can be conceived is no guarantee that it will happen.

If I think back thirty-something years to my days as a teenager, I remember being excited to read heady forecasts about a near-future world featuring hypersonic jet airliners, nuclear fusion reactors, manned colonies on the Moon and Mars, extended human lifespans, control over the weather and climate, and widespread usage of environmentally friendly electric cars.  These technology forecasts all turned out, in retrospect, to be embarrassing rather than visionary.  Indeed, history is littered with curious and amusing examples of flawed predictions of the future.  You may well wonder, what’s different about smartphones, and about all the predictions made about them at 3GSM?

With the advantage of hindsight, it’s clear that many technology forecasts have over-emphasised technological possibility and under-estimated the complications of wider system effects.  Just because something is technically possible, it does not mean it will happen, even though technology enthusiasts earnestly cheer it on.  Technology is not enough.  Especially for changes that are complex and demanding, no fewer than six other criteria should be satisfied as well:

  • The technological development has to satisfy a strong human need
  • The development has to be possible at a sufficiently attractive price to individual end users
  • The outcome of the development has to be sufficiently usable, that is, not requiring prolonged learning or disruptive changes in lifestyle
  • There must be a clear evolutionary path whereby the eventual version of the technology can be attained through a series of incremental steps that are, individually, easier to achieve
  • When bottlenecks arise in the development process, sufficient amounts of fresh new thinking must be brought to bear on the central problems – that is, the development process must be both open (to accept new ideas) and commercially attractive (to encourage the generation of new ideas, and, even more important, to encourage companies to continue to search for ways to successfully execute their ideas; after all, execution is the greater part of innovation)…

Interestingly, whereas past forecasts of the future have often over-estimated the development of technology as a whole, they have frequently under-estimated the progress of two trends: computer miniaturisation and mobile communications.  For example, some time around 1997 I was watching a repeat of the 1960s “Thunderbirds” TV puppet show with my son.  The show, about a family of brothers devoted to “international rescue” using high-tech machinery, was set around the turn of the century.  The plot denouement of this particular episode was the shocking existence of a computer so small that it could (wait for it) be packed into a suitcase and transported around the world!  As I watched the show, I took from my pocket my Psion Series 5 PDA and marvelled at it – a real-life example of a widely available computer more powerful yet more miniature than that foreseen in the programme.

As I said, the pace of technological development is far from being black-and-white.  Sometimes it proceeds slower than you expect, and at other times, it can proceed much quicker.

The missing ingredient

With the advantage of even more hindsight, there’s one more element that should be elevated, as frequently making the difference between new products arriving sooner and them arriving later: the degree of practical focus and effective priority placed by the relevant ecosystem on creating these products.  For medibots and other lifespan-enhancing technologies to move from science fiction to science fact will probably require changes in both public opinion and public action.

It’s All About Nanobots

In a famous scene from the movie, The Graduate, Benjamin’s mentor gives him career advice in a single word: “plastics.”  Today, that word might be “software,” or “biotechnology,” but in another couple of decades, the word is likely to be “nanobots.”  Nanobots—blood-cell-sized robots—will provide the means to radically redesign our digestive systems, and, incidentally, just about everything else.

In an intermediate phase, nanobots in the digestive tract and bloodstream will intelligently extract the precise nutrients we need, call for needed additional nutrients and supplements through our personal wireless local area network, and send the rest of the food we eat on its way to be passed through for elimination.

6 Comments »

  1. Hi David,

    I watched a documentary tonight, that touched on the Transhumanists. I remembered our discussion at SEE09, and wrote a short blog entry about it http://blog.petras.mobi/2009/11/28/transhumans-h.aspx

    One of the proferssors interviewed said that in science, we are increasingly starting to look inwards into our bodies, rather than outwards into the exterior. I need to comment that this may not be an entirely good thing.

    You’ll see that in my opinion, we only have limited scientific resources, and they should be directed to where they do most good. Matching the number of people (and domestic animals) on the planet to the limited natural resources is taks #1. Prolonging the life of those already living here would be a task #2 or even #3.

    This is not to say that I don’t see value in the transhumanistic way of thinking. If we could slow down the overpopulation by results of bio- or nanotech, that would be a good thing.

    I will follow the discussions at UKH+ and see if it will change my thinking.

    Comment by Petra — 28 November 2009 @ 7:09 pm

    • With biotech, nanotech and biomems systems much of the resource problems go away with the ability to directly control nutrient flow along with regulate all other body functions including birth control and many diseases cured including to name a few cancer, Parkinson’s, Alzheimer and Aids.

      Comment by Joseph Feagle — 2 May 2013 @ 7:04 pm

  2. Hi David,

    I’m an CI-user myself, and caught interest in your comments about your friend in this post. Do you have any sources to the information about the future generations of CI?

    Comment by Ulf — 3 December 2009 @ 1:09 pm

  3. Hi Ulf,

    It’s good to hear from you.

    With reference to my mention about cochlear implants:

    The age of neural implants is also well under way. We have brain implants based on “neuromorphic” modeling (i.e., reverse-engineering of the human brain and nervous system) for a rapidly growing list of brain regions. A friend of mine who became deaf while an adult can now engage in telephone conversations again because of his cochlear implant, a device that interfaces directly with the auditory nervous system. He plans to replace it with a new model with a thousand levels of frequency discrimination, which will enable him to hear music once again. He laments that he has had the same melodies playing in his head for the past 15 years and is looking forward to hearing some new tunes. A future generation of cochlear implants now on the drawing board will provide levels of frequency discrimination that go significantly beyond that of “normal” hearing…

    This paragraph was part of a section I quoted from Ray Kurzweil’s essay, so the friend mentioned was a friend of Ray Kurzweil’s – not someone I know personally.

    I’m far from being an expert in cochlear implants, though I’m keen to learn more!

    // dw2

    Comment by David Wood — 4 December 2009 @ 12:24 pm

  4. […] for a route to indefinite human lifespans. You can read the full essay on Ray’s site or abridged highlights courtesy of […]

    Pingback by Human Body 2.0 – a timeline to immortality? | Human 2.0 — 28 April 2010 @ 12:25 pm

  5. It is really interesting sometimes to reflect how biomems market had advanced through the years, what a time to be alive!

    Comment by Dave Sandoval — 15 July 2016 @ 5:35 pm


RSS feed for comments on this post. TrackBack URI

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Blog at WordPress.com.

%d bloggers like this: